logo

Yhdistelmäpeliteoria | Set 4 (Sprague - Grundy Lause)

Edellytykset: Grundy numerot/numerot ja mex
Olemme jo nähneet sarjassa 2 (https://www.geeksforgeeks.org/dsa/combinatorial-game-theory-set-2-game-nim/), että voimme löytää kuka voittaa NIM-pelissä pelaamatta peliä.
Oletetaan, että muutamme klassista NIM -peliä vähän. Tällä kertaa jokainen pelaaja voi poistaa vain vain 1 2 tai 3 kiveä (eikä mikään määrä kiviä, kuten klassisessa NIM -pelissä). Voimmeko ennustaa kuka voittaa?
Kyllä, voimme ennustaa voittajan Sprague-Grundy-lauseen avulla.

Mikä on Sprague-Grundy-lause?  
Oletetaan, että N-al-peleistä ja kahdesta pelaajasta A ja B. koostuu yhdistelmäpeli (useampi kuin yksi alamäärä) ja sitten Sprague-Grundy-lause sanoo, että jos sekä A- että B-pelaavat optimaalisesti (ts. He eivät tee virheitä), niin pelaaja, joka alkaa ensin, voittaisi, jos pelin alussa on grundy-asemoiden lukumäärä. Muuten, jos XOR arvioi nollaan, pelaaja A menettää ehdottomasti riippumatta siitä.

Kuinka soveltaa Sprague Grundy -lausetta?  
Voimme käyttää Sprague-Grundy-lausetta missä tahansa puolueeton peli ja ratkaise se. Perusvaiheet on lueteltu seuraavasti: 



  1. Jatka yhdistelmäpeliä ala-peleihin.
  2. Sitten jokaiselle alapelille lasketaan grundy-luku siinä asennossa.
  3. Laske sitten kaikkien laskettujen grundy -lukujen XOR.
  4. Jos XOR-arvo ei ole nolla, niin pelaajan, joka aikoo kääntyä (ensimmäinen pelaaja), voittaa muuten, että hänen on tarkoitus menettää riippumatta siitä.

Esimerkki peli: Peli alkaa 3 paalulla, joissa on 3 4 ja 5 kiviä ja siirrettävä pelaaja voi viedä positiivisen määrän kiviä vain 3 vain mistä tahansa paalusta [edellyttäen, että paalulla on niin paljon kiviä]. Viimeinen pelaaja, joka siirtää voittoja. Mikä pelaaja voittaa pelin olettaen, että molemmat pelaajat pelaavat optimaalisesti?

Kuinka kertoa kuka voittaa soveltamalla Sprague-Grundy-lauseita?  
Kuten voimme nähdä, että tämä peli koostuu useista alamerkeistä. 
Ensimmäinen askel: Ala-pelejä voidaan pitää jokaisena paaluina. 
Toinen vaihe: Alla olevasta taulukosta näemme sen 

Grundy(3) = 3 Grundy(4) = 0 Grundy(5) = 1 

Sprague - Grundy -lause' src='//techcodeview.com/img/combinatorial/87/combinatorial-game-theory-set-4-sprague-grundy-theorem.webp' title=

Olemme jo nähneet kuinka laskea tämän pelin grundy -lukuja edellinen artikla.
Kolmas vaihe: XOR 3 0 1 = 2
Neljäs vaihe: Koska Xor on nolla-numero, niin voimme sanoa, että ensimmäinen pelaaja voittaa.

Alla on ohjelma, joka toteuttaa yli 4 vaihetta. 

C++
/* Game Description-  'A game is played between two players and there are N piles  of stones such that each pile has certain number of stones.  On his/her turn a player selects a pile and can take any  non-zero number of stones upto 3 (i.e- 123)  The player who cannot move is considered to lose the game  (i.e. one who take the last stone is the winner).  Can you find which player wins the game if both players play  optimally (they don't make any mistake)? '  A Dynamic Programming approach to calculate Grundy Number  and Mex and find the Winner using Sprague - Grundy Theorem. */ #include   using namespace std; /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started.  n -> Number of piles  Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game  The piles[] and Grundy[] are having 0-based indexing*/ #define PLAYER1 1 #define PLAYER2 2 // A Function to calculate Mex of all the values in that set int calculateMex(unordered_set<int> Set) {  int Mex = 0;  while (Set.find(Mex) != Set.end())  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' int calculateGrundy(int n int Grundy[]) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  unordered_set<int> Set; // A Hash Table  for (int i=1; i<=3; i++)  Set.insert (calculateGrundy (n-i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game void declareWinner(int whoseTurn int piles[]  int Grundy[] int n) {  int xorValue = Grundy[piles[0]];  for (int i=1; i<=n-1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  printf('Player 1 will winn');  else  printf('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  printf('Player 2 will winn');  else  printf('Player 1 will winn');  }  return; } // Driver program to test above functions int main() {  // Test Case 1  int piles[] = {3 4 5};  int n = sizeof(piles)/sizeof(piles[0]);  // Find the maximum element  int maximum = *max_element(piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy[maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);  /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  return (0); } 
Java
import java.util.*; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG {   /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<Integer> Set) {  int Mex = 0;  while (Set.contains(Mex))  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int Grundy[]) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  // A Hash Table  HashSet<Integer> Set = new HashSet<Integer>();   for (int i = 1; i <= 3; i++)  Set.add(calculateGrundy (n - i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int piles[]  int Grundy[] int n) {  int xorValue = Grundy[piles[0]];  for (int i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  System.out.printf('Player 1 will winn');  else  System.out.printf('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  System.out.printf('Player 2 will winn');  else  System.out.printf('Player 1 will winn');  }  return; } // Driver code public static void main(String[] args)  {    // Test Case 1  int piles[] = {3 4 5};  int n = piles.length;  // Find the maximum element  int maximum = Arrays.stream(piles).max().getAsInt();  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy[] = new int[maximum + 1];  Arrays.fill(Grundy -1);  // Calculate Grundy Value of piles[i] and store it  for (int i = 0; i <= n - 1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);  /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  } }  // This code is contributed by PrinciRaj1992 
Python3
''' Game Description-   'A game is played between two players and there are N piles   of stones such that each pile has certain number of stones.   On his/her turn a player selects a pile and can take any   non-zero number of stones upto 3 (i.e- 123)   The player who cannot move is considered to lose the game   (i.e. one who take the last stone is the winner).   Can you find which player wins the game if both players play   optimally (they don't make any mistake)? '     A Dynamic Programming approach to calculate Grundy Number   and Mex and find the Winner using Sprague - Grundy Theorem.    piles[] -> Array having the initial count of stones/coins   in each piles before the game has started.   n -> Number of piles     Grundy[] -> Array having the Grundy Number corresponding to   the initial position of each piles in the game     The piles[] and Grundy[] are having 0-based indexing''' PLAYER1 = 1 PLAYER2 = 2 # A Function to calculate Mex of all # the values in that set  def calculateMex(Set): Mex = 0; while (Mex in Set): Mex += 1 return (Mex) # A function to Compute Grundy Number of 'n'  def calculateGrundy(n Grundy): Grundy[0] = 0 Grundy[1] = 1 Grundy[2] = 2 Grundy[3] = 3 if (Grundy[n] != -1): return (Grundy[n]) # A Hash Table  Set = set() for i in range(1 4): Set.add(calculateGrundy(n - i Grundy)) # Store the result  Grundy[n] = calculateMex(Set) return (Grundy[n]) # A function to declare the winner of the game  def declareWinner(whoseTurn piles Grundy n): xorValue = Grundy[piles[0]]; for i in range(1 n): xorValue = (xorValue ^ Grundy[piles[i]]) if (xorValue != 0): if (whoseTurn == PLAYER1): print('Player 1 will winn'); else: print('Player 2 will winn'); else: if (whoseTurn == PLAYER1): print('Player 2 will winn'); else: print('Player 1 will winn'); # Driver code if __name__=='__main__': # Test Case 1  piles = [ 3 4 5 ] n = len(piles) # Find the maximum element  maximum = max(piles) # An array to cache the sub-problems so that  # re-computation of same sub-problems is avoided  Grundy = [-1 for i in range(maximum + 1)]; # Calculate Grundy Value of piles[i] and store it  for i in range(n): calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n);    ''' Test Case 2   int piles[] = {3 8 2};   int n = sizeof(piles)/sizeof(piles[0]);       int maximum = *max_element (piles piles + n);     // An array to cache the sub-problems so that   // re-computation of same sub-problems is avoided   int Grundy [maximum + 1];   memset(Grundy -1 sizeof (Grundy));     // Calculate Grundy Value of piles[i] and store it   for (int i=0; i<=n-1; i++)   calculateGrundy(piles[i] Grundy);     declareWinner(PLAYER2 piles Grundy n); ''' # This code is contributed by rutvik_56 
C#
using System; using System.Linq; using System.Collections.Generic; /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? ' A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ class GFG  {   /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game The piles[] and Grundy[] are having 0-based indexing*/ static int PLAYER1 = 1; //static int PLAYER2 = 2; // A Function to calculate Mex of all the values in that set static int calculateMex(HashSet<int> Set) {  int Mex = 0;  while (Set.Contains(Mex))  Mex++;  return (Mex); } // A function to Compute Grundy Number of 'n' static int calculateGrundy(int n int []Grundy) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;  if (Grundy[n] != -1)  return (Grundy[n]);  // A Hash Table  HashSet<int> Set = new HashSet<int>();   for (int i = 1; i <= 3; i++)  Set.Add(calculateGrundy (n - i Grundy));  // Store the result  Grundy[n] = calculateMex (Set);  return (Grundy[n]); } // A function to declare the winner of the game static void declareWinner(int whoseTurn int []piles  int []Grundy int n) {  int xorValue = Grundy[piles[0]];  for (int i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];  if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  Console.Write('Player 1 will winn');  else  Console.Write('Player 2 will winn');  }  else  {  if (whoseTurn == PLAYER1)  Console.Write('Player 2 will winn');  else  Console.Write('Player 1 will winn');  }  return; } // Driver code static void Main()  {    // Test Case 1  int []piles = {3 4 5};  int n = piles.Length;  // Find the maximum element  int maximum = piles.Max();  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int []Grundy = new int[maximum + 1];  Array.Fill(Grundy -1);  // Calculate Grundy Value of piles[i] and store it  for (int i = 0; i <= n - 1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER1 piles Grundy n);    /* Test Case 2  int piles[] = {3 8 2};  int n = sizeof(piles)/sizeof(piles[0]);  int maximum = *max_element (piles piles + n);  // An array to cache the sub-problems so that  // re-computation of same sub-problems is avoided  int Grundy [maximum + 1];  memset(Grundy -1 sizeof (Grundy));  // Calculate Grundy Value of piles[i] and store it  for (int i=0; i<=n-1; i++)  calculateGrundy(piles[i] Grundy);  declareWinner(PLAYER2 piles Grundy n); */  } }  // This code is contributed by mits 
JavaScript
<script> /* Game Description- 'A game is played between two players and there are N piles of stones such that each pile has certain number of stones. On his/her turn a player selects a pile and can take any non-zero number of stones upto 3 (i.e- 123) The player who cannot move is considered to lose the game (i.e. one who take the last stone is the winner). Can you find which player wins the game if both players play optimally (they don't make any mistake)? '   A Dynamic Programming approach to calculate Grundy Number and Mex and find the Winner using Sprague - Grundy Theorem. */ /* piles[] -> Array having the initial count of stones/coins  in each piles before the game has started. n -> Number of piles   Grundy[] -> Array having the Grundy Number corresponding to  the initial position of each piles in the game   The piles[] and Grundy[] are having 0-based indexing*/ let PLAYER1 = 1; let PLAYER2 = 2; // A Function to calculate Mex of all the values in that set function calculateMex(Set) {  let Mex = 0;    while (Set.has(Mex))  Mex++;    return (Mex); } // A function to Compute Grundy Number of 'n' function calculateGrundy(nGrundy) {  Grundy[0] = 0;  Grundy[1] = 1;  Grundy[2] = 2;  Grundy[3] = 3;    if (Grundy[n] != -1)  return (Grundy[n]);    // A Hash Table  let Set = new Set();    for (let i = 1; i <= 3; i++)  Set.add(calculateGrundy (n - i Grundy));    // Store the result  Grundy[n] = calculateMex (Set);    return (Grundy[n]); } // A function to declare the winner of the game function declareWinner(whoseTurnpilesGrundyn) {  let xorValue = Grundy[piles[0]];    for (let i = 1; i <= n - 1; i++)  xorValue = xorValue ^ Grundy[piles[i]];    if (xorValue != 0)  {  if (whoseTurn == PLAYER1)  document.write('Player 1 will win  
'
); else document.write('Player 2 will win
'
); } else { if (whoseTurn == PLAYER1) document.write('Player 2 will win
'
); else document.write('Player 1 will win
'
); } return; } // Driver code // Test Case 1 let piles = [3 4 5]; let n = piles.length; // Find the maximum element let maximum = Math.max(...piles) // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided let Grundy = new Array(maximum + 1); for(let i=0;i<maximum+1;i++) Grundy[i]=0; // Calculate Grundy Value of piles[i] and store it for (let i = 0; i <= n - 1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER1 piles Grundy n); /* Test Case 2 int piles[] = {3 8 2}; int n = sizeof(piles)/sizeof(piles[0]); int maximum = *max_element (piles piles + n); // An array to cache the sub-problems so that // re-computation of same sub-problems is avoided int Grundy [maximum + 1]; memset(Grundy -1 sizeof (Grundy)); // Calculate Grundy Value of piles[i] and store it for (int i=0; i<=n-1; i++) calculateGrundy(piles[i] Grundy); declareWinner(PLAYER2 piles Grundy n); */ // This code is contributed by avanitrachhadiya2155 </script>

Lähtö:  

Player 1 will win

Ajan monimutkaisuus: O (n^2) missä n on kasaan enimmäismäärä kiviä. 

Avaruuden monimutkaisuus: O (n) Koska grundy -taulukkoa käytetään alaryhmien tulosten tallentamiseen redundanttien laskelmien välttämiseksi ja se vie o (n) -tilaa.

Viitteet:  
https://en.wikipedia.org/wiki/sprague%E2%80%93Grundy_Theorem

Harjoittele lukijoille: Harkitse alla olevaa peliä. 
Peli pelaa kaksi pelaajaa N kokonaisluku A1 A2 .. An. Hänen vuorollaan pelaaja valitsee kokonaisluvun jaktaa sen 2 3 tai 6: lla ja ottaa sitten lattian. Jos kokonaisluku tulee 0, se poistetaan. Viimeinen pelaaja, joka siirtää voittoja. Mikä pelaaja voittaa pelin, jos molemmat pelaajat pelaavat optimaalisesti?
Vihje: Katso esimerkki 3 edellinen artikla.