logo

Jaa taulukko kahteen alitaulukkoon siten, että niiden keskiarvot ovat yhtä suuret

Kun annettu kokonaislukutaulukko, tehtävänä on jakaa kokonaislukutaulukko kahdeksi alitaulukoksi, jotta niiden keskiarvot saadaan yhtä suureksi, jos mahdollista.

Esimerkkejä:  

mikä on regex java
Input : arr[] = {1 5 7 2 0}; Output : (0 1) and (2 4) Subarrays arr[0..1] and arr[2..4] have same average. Input : arr[] = {4 3 5 9 11}; Output : Not possible

Kysytty Microsoftissa 



A Naiivi lähestymistapa on ajaa kaksi silmukkaa ja löytää aliryhmiä, joiden keskiarvot ovat yhtä suuret. 

Toteutus:

C++
// Simple C++ program to find subarrays // whose averages are equal #include   using namespace std; // Finding two subarrays // with equal average. void findSubarrays(int arr[] int n) {  bool found = false;  int lsum = 0;  for (int i = 0; i < n - 1; i++)  {  lsum += arr[i];  int rsum = 0;  for (int j = i + 1; j < n; j++)  rsum += arr[j];  // If averages of arr[0...i] and   // arr[i+1..n-1] are same. To avoid  // floating point problems we compare   // 'lsum*(n-i+1)' and 'rsum*(i+1)'   // instead of 'lsum/(i+1)' and   // 'rsum/(n-i+1)'  if (lsum * (n - i - 1) ==   rsum * (i + 1))  {  printf('From (%d %d) to (%d %d)n'  0 i i + 1 n - 1);  found = true;  }  }  // If no subarrays found  if (found == false)  cout << 'Subarrays not found'   << endl; } // Driver code int main() {  int arr[] = {1 5 7 2 0};  int n = sizeof(arr) / sizeof(arr[0]);  findSubarrays(arr n);  return 0; } 
Java
// Simple Java program to find subarrays // whose averages are equal public class GFG {    // Finding two subarrays  // with equal average.  static void findSubarrays(int[] arr int n)  {  boolean found = false;  int lsum = 0;    for (int i = 0; i < n - 1; i++)  {  lsum += arr[i];  int rsum = 0;    for (int j = i + 1; j < n; j++)  rsum += arr[j];    // If averages of arr[0...i] and   // arr[i+1..n-1] are same. To avoid  // floating point problems we compare   // 'lsum*(n-i+1)' and 'rsum*(i+1)'   // instead of 'lsum/(i+1)' and   // 'rsum/(n-i+1)'  if (lsum * (n - i - 1) ==   rsum * (i + 1))  {  System.out.println('From (0 ' + i   + ') to (' +(i + 1) + ' '  + (n - 1)+ ')');    found = true;  }  }    // If no subarrays found  if (found == false)  System.out.println( 'Subarrays not '  + 'found');  }    // Driver code  static public void main (String[] args)  {  int[] arr = {1 5 7 2 0};  int n = arr.length;  findSubarrays(arr n);  } } // This code is contributed by Mukul Singh. 
Python 3
# Simple Python 3 program to find subarrays # whose averages are equal # Finding two subarrays with equal average. def findSubarrays(arr n): found = False lsum = 0 for i in range(n - 1): lsum += arr[i] rsum = 0 for j in range(i + 1 n): rsum += arr[j] # If averages of arr[0...i] and  # arr[i+1..n-1] are same. To avoid # floating point problems we compare  # 'lsum*(n-i+1)' and 'rsum*(i+1)'  # instead of 'lsum/(i+1)' and  # 'rsum/(n-i+1)' if (lsum * (n - i - 1) == rsum * (i + 1)): print('From' '(' 0 i ')' 'to' '(' i + 1 n - 1 ')') found = True # If no subarrays found if (found == False): print('Subarrays not found') # Driver code if __name__ == '__main__': arr = [1 5 7 2 0] n = len(arr) findSubarrays(arr n) # This code is contributed by ita_c 
C#
// Simple C# program to find subarrays // whose averages are equal using System; public class GFG {    // Finding two subarrays  // with equal average.  static void findSubarrays(int []arr int n)  {  bool found = false;  int lsum = 0;    for (int i = 0; i < n - 1; i++)  {  lsum += arr[i];  int rsum = 0;    for (int j = i + 1; j < n; j++)  rsum += arr[j];    // If averages of arr[0...i] and   // arr[i+1..n-1] are same. To avoid  // floating point problems we compare   // 'lsum*(n-i+1)' and 'rsum*(i+1)'   // instead of 'lsum/(i+1)' and   // 'rsum/(n-i+1)'  if (lsum * (n - i - 1) ==   rsum * (i + 1))  {  Console.WriteLine('From ( 0 ' + i   + ') to(' + (i + 1) + ' '  + (n - 1) + ')');    found = true;  }  }    // If no subarrays found  if (found == false)  Console.WriteLine( 'Subarrays not '  + 'found');  }    // Driver code  static public void Main ()  {  int []arr = {1 5 7 2 0};  int n = arr.Length;  findSubarrays(arr n);  } } // This code is contributed by anuj_67. 
PHP
 // Simple PHP program to find subarrays // whose averages are equal // Finding two subarrays  // with equal average. function findSubarrays( $arr $n) { $found = false; $lsum = 0; for ( $i = 0; $i < $n - 1; $i++) { $lsum += $arr[$i]; $rsum = 0; for ( $j = $i + 1; $j < $n; $j++) $rsum += $arr[$j]; // If averages of arr[0...i] and  // arr[i+1..n-1] are same. To avoid // floating point problems we compare // 'lsum*(n-i+1)' and 'rsum*(i+1)' // instead of 'lsum/(i+1)' and 'rsum/(n-i+1)' if ($lsum * ($n - $i - 1) == $rsum * ($i + 1)) { echo 'From ( 0 ' $i' )'. ' to (' $i + 1' ' $n - 1')n'; $found = true; } } // If no subarrays found if ($found == false) echo 'Subarrays not found' ; } // Driver code $arr = array(1 5 7 2 0); $n = count($arr); findSubarrays($arr $n); // This code is contributed by vt_m ?> 
JavaScript
<script> // Simple Javascript program to find subarrays // whose averages are equal    // Finding two subarrays  // with equal average.  function findSubarrays(arrn)  {  let found = false;  let lsum = 0;    for (let i = 0; i < n - 1; i++)  {  lsum += arr[i];  let rsum = 0;    for (let j = i + 1; j < n; j++)  rsum += arr[j];    // If averages of arr[0...i] and   // arr[i+1..n-1] are same. To avoid  // floating point problems we compare   // 'lsum*(n-i+1)' and 'rsum*(i+1)'   // instead of 'lsum/(i+1)' and   // 'rsum/(n-i+1)'  if (lsum * (n - i - 1) ==   rsum * (i + 1))  {  document.write('From (0 ' + i   + ') to (' +(i + 1) + ' '  + (n - 1)+ ')');    found = true;  }  }    // If no subarrays found  if (found == false)  document.write( 'Subarrays not '  + 'found');  }    // Driver code  let arr=[1 5 7 2 0];  let n = arr.length;  findSubarrays(arr n);    // This code is contributed by avanitrachhadiya2155   </script>  

Lähtö
From (0 1) to (2 4)

Aika monimutkaisuus: O(n2
Aputila: O(1)

An Tehokas ratkaisu on löytää taulukon elementtien summa. Alusta Leftsum nollaksi. Suorita silmukka ja etsi vasen summa lisäämällä taulukon elementtejä. Oikeussummalle vähennämme kokonaissummasta leftum, jonka jälkeen löydämme rightum ja löydämme vasemman ja rightumin keskiarvon indeksin mukaan.

1) Compute sum of all array elements. Let this sum be 'sum' 2) Initialize leftsum = 0. 3) Run a loop for i=0 to n-1. a) leftsum = leftsum + arr[i] b) rightsum = sum - leftsum c) If average of left and right are same print current index as output.

Alla on yllä olevan lähestymistavan toteutus:

numpy ainutlaatuinen
C++
// Efficient C++ program for  // dividing array to make  // average equal #include   using namespace std; void findSubarrays(int arr[] int n) {  // Find array sum  int sum = 0;  for (int i = 0; i < n; i++)  sum += arr[i];  bool found = false;  int lsum = 0;  for (int i = 0; i < n - 1; i++)  {  lsum += arr[i];  int rsum = sum - lsum;  // If averages of arr[0...i]   // and arr[i+1..n-1] are same.   // To avoid floating point problems  // we compare 'lsum*(n-i+1)'   // and 'rsum*(i+1)' instead of   // 'lsum/(i+1)' and 'rsum/(n-i+1)'  if (lsum * (n - i - 1) == rsum * (i + 1))  {  printf('From (%d %d) to (%d %d)n'  0 i i+1 n-1);  found = true;  }  }  // If no subarrays found  if (found == false)  cout << 'Subarrays not found'  << endl; } // Driver code int main() {  int arr[] = {1 5 7 2 0};  int n = sizeof(arr) / sizeof(arr[0]);  findSubarrays(arr n);  return 0; } 
Java
// Efficient Java program for  // dividing array to make  // average equal import java.util.*;   class GFG { static void findSubarrays(int arr[] int n) {  // Find array sum  int sum = 0;  for (int i = 0; i < n; i++)  sum += arr[i];  boolean found = false;  int lsum = 0;  for (int i = 0; i < n - 1; i++)  {  lsum += arr[i];  int rsum = sum - lsum;  // If averages of arr[0...i]   // and arr[i+1..n-1] are same.   // To avoid floating point problems  // we compare 'lsum*(n-i+1)'   // and 'rsum*(i+1)' instead of   // 'lsum/(i+1)' and 'rsum/(n-i+1)'  if (lsum * (n - i - 1) == rsum * (i + 1))  {  System.out.printf('From (%d %d) to (%d %d)n'  0 i i + 1 n - 1);  found = true;  }  }  // If no subarrays found  if (found == false)  System.out.println('Subarrays not found'); } // Driver code static public void main ( String []arg) {  int arr[] = {1 5 7 2 0};  int n = arr.length;  findSubarrays(arr n); } } // This code is contributed by Princi Singh 
Python3
# Efficient Python program for  # dividing array to make  # average equal def findSubarrays(arr n): # Find array sum sum = 0; for i in range(n): sum += arr[i]; found = False; lsum = 0; for i in range(n - 1): lsum += arr[i]; rsum = sum - lsum; # If averages of arr[0...i] # and arr[i + 1..n - 1] are same. # To avoid floating point problems # we compare 'lsum*(n - i + 1)' # and 'rsum*(i + 1)' instead of # 'lsum / (i + 1)' and 'rsum/(n - i + 1)' if (lsum * (n - i - 1) == rsum * (i + 1)): print('From (%d %d) to (%d %d)n'% (0 i i + 1 n - 1)); found = True; # If no subarrays found if (found == False): print('Subarrays not found'); # Driver code if __name__ == '__main__': arr = [ 1 5 7 2 0 ]; n = len(arr); findSubarrays(arr n); # This code is contributed by Rajput-Ji 
C#
// Efficient C# program for  // dividing array to make  // average equal using System;   class GFG { static void findSubarrays(int []arr int n) {  // Find array sum  int sum = 0;  for (int i = 0; i < n; i++)  sum += arr[i];  bool found = false;  int lsum = 0;  for (int i = 0; i < n - 1; i++)  {  lsum += arr[i];  int rsum = sum - lsum;  // If averages of arr[0...i]   // and arr[i+1..n-1] are same.   // To avoid floating point problems  // we compare 'lsum*(n-i+1)'   // and 'rsum*(i+1)' instead of   // 'lsum/(i+1)' and 'rsum/(n-i+1)'  if (lsum * (n - i - 1) == rsum * (i + 1))  {  Console.Write('From ({0} {1}) to ({2} {3})n'  0 i i + 1 n - 1);  found = true;  }  }  // If no subarrays found  if (found == false)  Console.WriteLine('Subarrays not found'); } // Driver code static public void Main ( String []arg) {  int []arr = {1 5 7 2 0};  int n = arr.Length;  findSubarrays(arr n); } }   // This code is contributed by Rajput-Ji 
JavaScript
<script> // Efficient Javascript program for // dividing array to make // average equal    function findSubarrays(arrn)  {  // Find array sum  let sum = 0;  for (let i = 0; i < n; i++)  sum += arr[i];  let found = false;  let lsum = 0;  for (let i = 0; i < n - 1; i++)  {  lsum += arr[i];  let rsum = sum - lsum;  // If averages of arr[0...i]  // and arr[i+1..n-1] are same.  // To avoid floating point problems  // we compare 'lsum*(n-i+1)'  // and 'rsum*(i+1)' instead of  // 'lsum/(i+1)' and 'rsum/(n-i+1)'  if (lsum * (n - i - 1) == rsum * (i + 1))  {  document.write(  'From (0 '+i+') to ('+(i+1)+' '+(n-1)+')n'  );    found = true;  }  }  // If no subarrays found  if (found == false)  document.write('Subarrays not found');  }  // Driver code  let arr=[1 5 7 2 0];  let n = arr.length;  findSubarrays(arr n);    // This code is contributed by rag2127 </script> 

Lähtö
From (0 1) to (2 4)

Aika monimutkaisuus: O(n) 
Aputila: O(1)

 

Luo tietokilpailu