Lukua kutsutaan onnelliseksi, jos se johtaa 1:een vaihesarjan jälkeen, jossa jokainen askelnumero korvataan sen numeron neliöiden summalla, eli jos aloitamme onnellisilla numeroilla ja korvaamme sen numeroilla neliösumma, saavutamme 1:n.
Esimerkkejä:
Input: n = 19
Output: True
19 is Happy Number
1^2 + 9^2 = 82
8^2 + 2^2 = 68
6^2 + 8^2 = 100
1^2 + 0^2 + 0^2 = 1
As we reached to 1 19 is a Happy Number.
Input: n = 20
Output: False
Numero ei ole onnellinen numero, kun se tekee sekvenssissään silmukan, eli se koskettaa numeroa järjestyksessä, jota on jo kosketettu. Joten tarkistaaksemme, onko numero onnellinen vai ei, voimme pitää joukon, jos sama numero toistuu, merkitsemme tuloksen ei-tyytyväiseksi. Yllä olevan lähestymistavan yksinkertainen funktio voidaan kirjoittaa seuraavasti -
round robin -aikatauluC++
// method return true if n is Happy Number int numSquareSum(int n) { int num = 0; while (n != 0) { int digit = n % 10; num += digit * digit; n /= 10; } return num; } int isHappyNumber(int n) { set<int> st; while (1) { n = numSquareSum(n); if (n == 1) return true; if (st.find(n) != st.end()) return false; st.insert(n); } }
Java // method return true if n is Happy Number public static int numSquareSum(int n) { int num = 0; while (n != 0) { int digit = n % 10; num += digit * digit; n /= 10; } return num; } static boolean isHappyNumber(int n) { HashSet<Integer> st = new HashSet<>(); while (true) { n = numSquareSum(n); if (n == 1) return true; if (st.contains(n)) return false; st.add(n); } } // This code is contributed by Princi Singh
Python # method return true if n is Happy Number def numSquareSum(n): num = 0 while(n): digit = n % 10 num = num + digit*digit n = n // 10 return num def isHappyNumber(n): st = set() while (1): n = numSquareSum(n) if (n == 1): return True if n not in st: return False st.insert(n)
C# // Method return true if n is Happy Number static int numSquareSum(int n) { int num = 0; while (n != 0) { int digit = n % 10; num += digit * digit; n /= 10; } return num; } static int isHappyNumber(int n) { HashSet<int> st = new HashSet<>(); while (1) { n = numSquareSum(n); if (n == 1) return true; if (st.Contains(n)) return false; st.Add(n); } } // This code is contributed by 29AjayKumar
JavaScript <script> // method return true if n is Happy Number function numSquareSum(n) { let num = 0; while (n !== 0) { let digit = n % 10; num += digit * digit; n = Math.floor(n / 10); } return num; } let st = new Set(); while (1) { n = numSquareSum(n); if (n == 1) return true; if (st.has(n)) return false; st.add(n); } } //This code is contributed by Mayank Tyagi </script>
Monimutkaisuusanalyysi:
Aika monimutkaisuus: O(n*log(n)).
Aputila: O(n), koska käytetään ylimääräistä sarjaa säilytykseen
merkkijono boolen javaan
Voimme ratkaista tämän ongelman ilman ylimääräistä tilaa ja tätä tekniikkaa voidaan käyttää myös joissakin muissa vastaavissa ongelmissa. Jos käsittelemme jokaista lukua solmuna ja korvaamista neliösummalla linkkinä, tämä ongelma on sama kuin silmukan löytäminen linkkiluettelosta :
Joten yllä olevan linkin ratkaisuehdotuksena pidämme kaksi numeroa hitaana ja nopeana sekä alustus annetusta numerosta hidas korvataan askel kerrallaan ja nopea kaksi askelta kerrallaan. Jos he kokoontuvat yhdeltä, annettu numero on onnellinen numero, muuten ei.
C++// C++ program to check a number is a Happy number or not #include using namespace std; // Utility method to return sum of square of digit of n int numSquareSum(int n) { int squareSum = 0; while (n) { squareSum += (n % 10) * (n % 10); n /= 10; } return squareSum; } // method return true if n is Happy number bool isHappynumber(int n) { int slow fast; // initialize slow and fast by n slow = fast = n; do { // move slow number by one iteration slow = numSquareSum(slow); // move fast number by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 then return true return (slow == 1); } // Driver code to test above methods int main() { int n = 13; if (isHappynumber(n)) cout << n << ' is a Happy numbern'; else cout << n << ' is not a Happy numbern'; } // This code is contributed by divyeshrabadiya07
C // C program to check a number is a Happy number or not #include #include // Utility method to return sum of square of digit of n int numSquareSum(int n) { int squareSum = 0; while (n) { squareSum += (n % 10) * (n % 10); n /= 10; } return squareSum; } // method return true if n is Happy number bool isHappynumber(int n) { int slow fast; // initialize slow and fast by n slow = fast = n; do { // move slow number by one iteration slow = numSquareSum(slow); // move fast number by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 then return true return (slow == 1); } // Driver code to test above methods int main() { int n = 13; if (isHappynumber(n)) printf('%d is a Happy numbern' n); else printf('%d is not a Happy numbern' n); } // This code is contributed by Sania Kumari Gupta // (kriSania804)
Java // Java program to check a number is a Happy // number or not class GFG { // Utility method to return sum of square of // digit of n static int numSquareSum(int n) { int squareSum = 0; while (n!= 0) { squareSum += (n % 10) * (n % 10); n /= 10; } return squareSum; } // method return true if n is Happy number static boolean isHappynumber(int n) { int slow fast; // initialize slow and fast by n slow = fast = n; do { // move slow number // by one iteration slow = numSquareSum(slow); // move fast number // by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 // then return true return (slow == 1); } // Driver code to test above methods public static void main(String[] args) { int n = 13; if (isHappynumber(n)) System.out.println(n + ' is a Happy number'); else System.out.println(n + ' is not a Happy number'); } }
Python # Python3 program to check if a number is a Happy number or not # Utility method to return the sum of squares of digits of n def num_square_sum(n): square_sum = 0 while n: square_sum += (n % 10) ** 2 n //= 10 return square_sum # Method returns True if n is a Happy number def is_happy_number(n): # Initialize slow and fast pointers slow = n fast = n while True: # Move slow pointer by one iteration slow = num_square_sum(slow) # Move fast pointer by two iterations fast = num_square_sum(num_square_sum(fast)) if slow != fast: continue else: break # If both pointers meet at 1 then return True return slow == 1 # Driver Code n = 13 if is_happy_number(n): print(n 'is a Happy number') else: print(n 'is not a Happy number')
C# // C# program to check a number // is a Happy number or not using System; class GFG { // Utility method to return // sum of square of digit of n static int numSquareSum(int n) { int squareSum = 0; while (n!= 0) { squareSum += (n % 10) * (n % 10); n /= 10; } return squareSum; } // method return true if // n is Happy number static bool isHappynumber(int n) { int slow fast; // initialize slow and // fast by n slow = fast = n; do { // move slow number // by one iteration slow = numSquareSum(slow); // move fast number // by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 // then return true return (slow == 1); } // Driver code public static void Main() { int n = 13; if (isHappynumber(n)) Console.WriteLine(n + ' is a Happy number'); else Console.WriteLine(n + ' is not a Happy number'); } } // This code is contributed by anuj_67.
JavaScript <script> // Javascript program to check a number is a Happy // number or not // Utility method to return sum of square of // digit of n function numSquareSum(n) { var squareSum = 0; while (n!= 0) { squareSum += (n % 10) * (n % 10); n = parseInt(n/10); } return squareSum; } // method return true if n is Happy number function isHappynumber(n) { var slow fast; // initialize slow and fast by n slow = fast = n; do { // move slow number // by one iteration slow = numSquareSum(slow); // move fast number // by two iteration fast = numSquareSum(numSquareSum(fast)); } while (slow != fast); // if both number meet at 1 // then return true return (slow == 1); } // Driver code to test above methods var n = 13; if (isHappynumber(n)) document.write(n + ' is a Happy number'); else document.write(n + ' is not a Happy number'); // This code contributed by Princi Singh </script>
PHP // PHP program to check a number // is a Happy number or not // Utility method to return // sum of square of digit of n function numSquareSum( $n) { $squareSum = 0; while ($n) { $squareSum += ($n % 10) * ($n % 10); $n /= 10; } return $squareSum; } // method return true if // n is Happy number function isHappynumber( $n) { $slow; $fast; // initialize slow // and fast by n $slow = $n; $fast = $n; do { // move slow number // by one iteration $slow = numSquareSum($slow); // move fast number // by two iteration $fast = numSquareSum(numSquareSum($fast)); } while ($slow != $fast); // if both number meet at 1 // then return true return ($slow == 1); } // Driver Code $n = 13; if (isHappynumber($n)) echo $n ' is a Happy numbern'; else echo n ' is not a Happy numbern'; // This code is contributed by anuj_67. ?> Lähtö:
13 is a Happy NumberMonimutkaisuusanalyysi:
Aika monimutkaisuus: O(n*log(n)).
Aputila: O(1).
java-skanneri seuraavaksi
Toinen tapa ratkaista tämä ongelma ilman ylimääräistä tilaa.
Numero ei voi olla onnellinen luku jos jossakin vaiheessa saatujen numeroiden neliön summa on yksinumeroinen luku lukuun ottamatta 1 tai 7 . Tämä johtuu siitä, että 1 ja 7 ovat ainoat yksinumeroiset onnelliset luvut. Näiden tietojen avulla voimme kehittää lähestymistavan alla olevan koodin mukaisesti -
// C++ program to check if a number is a Happy number or // not. #include using namespace std; // Method - returns true if the input is a happy number else // returns false bool isHappynumber(int n) { int sum = n x = n; // This loop executes till the sum of square of digits // obtained is not a single digit number while (sum > 9) { sum = 0; // This loop finds the sum of square of digits while (x > 0) { int d = x % 10; sum += d * d; x /= 10; } x = sum; } if (sum == 7 || sum == 1) return true; return false; } int main() { int n = 13; if (isHappynumber(n)) cout << n << ' is a Happy number'; else cout << n << ' is not a Happy number'; return 0; } // This code is contributed by Sania Kumari Gupta
C // C program to check if a number is a Happy number or // not. #include #include // Method - returns true if the input is a happy number else // returns false bool isHappynumber(int n) { int sum = n x = n; // This loop executes till the sum of square of digits // obtained is not a single digit number while (sum > 9) { sum = 0; // This loop finds the sum of square of digits while (x > 0) { int d = x % 10; sum += d * d; x /= 10; } x = sum; } if (sum == 7 || sum == 1) return true; return false; } int main() { int n = 13; if (isHappynumber(n)) printf('%d is a Happy number' n); else printf('%d is not a Happy number' n); return 0; } // This code is contributed by Sania Kumari Gupta
Java // This code is contributed by Vansh Sodhi. // Java program to check if a number is a Happy number or // not. class GFG { // method - returns true if the input is a happy // number else returns false static boolean isHappynumber(int n) { int sum = n x = n; // this loop executes till the sum of square of // digits obtained is not a single digit number while (sum > 9) { sum = 0; // this loop finds the sum of square of digits while (x > 0) { int d = x % 10; sum += d * d; x /= 10; } x = sum; } if (sum == 1 || sum == 7) return true; return false; } // Driver code public static void main(String[] args) { int n = 13; if (isHappynumber(n)) System.out.println(n + ' is a Happy number'); else System.out.println(n + ' is not a Happy number'); } }
Python # Python3 program to check if a number is a Happy number or not. # Method - returns true if the input is # a happy number else returns false def isHappynumber(n): Sum x = n n # This loop executes till the sum # of square of digits obtained is # not a single digit number while Sum > 9: Sum = 0 # This loop finds the sum of # square of digits while x > 0: d = x % 10 Sum += d * d x = int(x / 10) x = Sum if Sum == 1 or Sum == 7: return True return False n = 13 if isHappynumber(n): print(n 'is a Happy number') else: print(n 'is not a Happy number') # This code is contributed by mukesh07.
C# // C# program to check if a number // is a Happy number or not. using System; class GFG { // Method - returns true if the input is // a happy number else returns false static bool isHappynumber(int n) { int sum = n x = n; // This loop executes till the sum // of square of digits obtained is // not a single digit number while (sum > 9) { sum = 0; // This loop finds the sum of // square of digits while (x > 0) { int d = x % 10; sum += d * d; x /= 10; } x = sum; } if (sum == 1 || sum == 7) return true; return false; } // Driver code public static void Main(String[] args) { int n = 13; if (isHappynumber(n)) Console.WriteLine(n + ' is a Happy number'); else Console.WriteLine(n + ' is not a Happy number'); } } // This code is contributed by 29AjayKumar
JavaScript <script> // This code is contributed by Vansh Sodhi. // javascript program to check if a number is a Happy number or not. // method - returns true if the input is a happy // number else returns false function isHappynumber(n) { var sum = n x = n; // this loop executes till the sum of square of // digits obtained is not a single digit number while(sum > 9) { sum = 0; // this loop finds the sum of square of digits while (x > 0) { var d = x % 10; sum += d * d; x /= 10; } x = sum; } if(sum == 1 || sum == 7) return true; return false; } // Driver code var n = 13; if (isHappynumber(n)) document.write(n + ' is a Happy number'); else document.write(n + ' is not a Happy number'); // This code is contributed by 29AjayKumar </script>
Lähtö
13 is a Happy number
Monimutkaisuusanalyysi:
Aika monimutkaisuus: O(n*log(n)).
Aputila: O(1).
Katso artikkelisi ilmestyvän GeeksforGeeksin pääsivulle ja auta muita nörtejä.