logo

Pisin mahdollinen reitti matriisissa esteiden kanssa

Kokeile sitä GfG Practicessa Pisin mahdollinen reitti matriisissa esteiden kanssa' title=

Annettu 2D-binaarimatriisi yhdessä [][] joissa jotkut solut ovat esteitä (merkitty0) ja loput ovat vapaita soluja (merkitty1) sinun tehtäväsi on löytää pisimmän mahdollisen reitin pituus lähdesolusta (xs ys) kohdesoluun (xd yd) .

  • Voit siirtyä vain vierekkäisiin soluihin (ylös vasen oikealle).
  • Diagonaaliset liikkeet eivät ole sallittuja.
  • Polussa kerran käydyssä solussa ei voi käydä uudelleen samalla polulla.
  • Jos määränpäähän on mahdotonta päästä, palauta-1.

Esimerkkejä:
Syöte: xs = 0 ys = 0 xd = 1 yd = 7
kanssa[][] = [ [1 1 1 1 1 1 1 1 1 1]
[1 1 0 1 1 0 1 1 0 1]
[1 1 1 1 1 1 1 1 1 1] ]
Lähtö: 24
Selitys:



poistaminen arraylistista

Syöte: xs = 0 ys = 3 xd = 2 yd = 2
kanssa[][] =[ [1 0 0 1 0]
[0 0 0 1 0]
[0 1 1 0 0] ]
Lähtö: -1
Selitys:
Voimme nähdä, että se on mahdotonta
päästä soluun (22) alkaen (03).

avaa asetusvalikko

Sisällysluettelo



[Lähestymistapa] Backtrackingin käyttäminen vieraillun matriisin kanssa

Ideana on käyttää Perääntyminen . Aloitamme matriisin lähdesolusta eteenpäin kaikkiin neljään sallittuun suuntaan ja tarkistamme rekursiivisesti, johtavatko ne ratkaisuun vai eivät. Jos kohde löytyy, päivitämme pisimmän polun arvon muuten, jos mikään yllä olevista ratkaisuista ei toimi, palautamme funktiostamme epätosi.

CPP
#include    #include  #include  #include    using namespace std; // Function to find the longest path using backtracking int dfs(vector<vector<int>> &mat   vector<vector<bool>> &visited int i   int j int x int y) {  int m = mat.size();  int n = mat[0].size();    // If destination is reached  if (i == x && j == y) {  return 0;  }    // If cell is invalid blocked or already visited  if (i < 0 || i >= m || j < 0 || j >= n ||   mat[i][j] == 0 || visited[i][j]) {  return -1;   }    // Mark current cell as visited  visited[i][j] = true;    int maxPath = -1;    // Four possible moves: up down left right  int row[] = {-1 1 0 0};  int col[] = {0 0 -1 1};    for (int k = 0; k < 4; k++) {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat visited   ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1) {  maxPath = max(maxPath 1 + pathLength);  }  }    // Backtrack - unmark current cell  visited[i][j] = false;    return maxPath; } int findLongestPath(vector<vector<int>> &mat   int xs int ys int xd int yd) {  int m = mat.size();  int n = mat[0].size();    // Check if source or destination is blocked  if (mat[xs][ys] == 0 || mat[xd][yd] == 0) {  return -1;  }    vector<vector<bool>> visited(m vector<bool>(n false));  return dfs(mat visited xs ys xd yd); } int main() {  vector<vector<int>> mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = findLongestPath(mat xs ys xd yd);    if (result != -1)  cout << result << endl;  else  cout << -1 << endl;    return 0; } 
Java
import java.util.Arrays; public class GFG {    // Function to find the longest path using backtracking  public static int dfs(int[][] mat boolean[][] visited  int i int j int x int y) {  int m = mat.length;  int n = mat[0].length;    // If destination is reached  if (i == x && j == y) {  return 0;  }    // If cell is invalid blocked or already visited  if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0 || visited[i][j]) {  return -1; // Invalid path  }    // Mark current cell as visited  visited[i][j] = true;    int maxPath = -1;    // Four possible moves: up down left right  int[] row = {-1 1 0 0};  int[] col = {0 0 -1 1};    for (int k = 0; k < 4; k++) {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat visited ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1) {  maxPath = Math.max(maxPath 1 + pathLength);  }  }    // Backtrack - unmark current cell  visited[i][j] = false;    return maxPath;  }    public static int findLongestPath(int[][] mat int xs int ys int xd int yd) {  int m = mat.length;  int n = mat[0].length;    // Check if source or destination is blocked  if (mat[xs][ys] == 0 || mat[xd][yd] == 0) {  return -1;  }    boolean[][] visited = new boolean[m][n];  return dfs(mat visited xs ys xd yd);  }    public static void main(String[] args) {  int[][] mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;  int xd = 1 yd = 7;    int result = findLongestPath(mat xs ys xd yd);    if (result != -1)  System.out.println(result);  else  System.out.println(-1);  } } 
Python
# Function to find the longest path using backtracking def dfs(mat visited i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid blocked or already visited if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0 or visited[i][j]: return -1 # Invalid path # Mark current cell as visited visited[i][j] = True maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat visited ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - unmark current cell visited[i][j] = False return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 visited = [[False for _ in range(n)] for _ in range(m)] return dfs(mat visited xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main() 
C#
using System; class GFG {  // Function to find the longest path using backtracking  static int dfs(int[] mat bool[] visited   int i int j int x int y)  {  int m = mat.GetLength(0);  int n = mat.GetLength(1);    // If destination is reached  if (i == x && j == y)  {  return 0;  }    // If cell is invalid blocked or already visited  if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0 || visited[i j])  {  return -1; // Invalid path  }    // Mark current cell as visited  visited[i j] = true;    int maxPath = -1;    // Four possible moves: up down left right  int[] row = {-1 1 0 0};  int[] col = {0 0 -1 1};    for (int k = 0; k < 4; k++)  {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat visited ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1)  {  maxPath = Math.Max(maxPath 1 + pathLength);  }  }    // Backtrack - unmark current cell  visited[i j] = false;    return maxPath;  }    static int FindLongestPath(int[] mat int xs int ys int xd int yd)  {  int m = mat.GetLength(0);  int n = mat.GetLength(1);    // Check if source or destination is blocked  if (mat[xs ys] == 0 || mat[xd yd] == 0)  {  return -1;  }    bool[] visited = new bool[m n];  return dfs(mat visited xs ys xd yd);  }    static void Main()  {  int[] mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = FindLongestPath(mat xs ys xd yd);    if (result != -1)  Console.WriteLine(result);  else  Console.WriteLine(-1);  } } 
JavaScript
// Function to find the longest path using backtracking function dfs(mat visited i j x y) {  const m = mat.length;  const n = mat[0].length;    // If destination is reached  if (i === x && j === y) {  return 0;  }    // If cell is invalid blocked or already visited  if (i < 0 || i >= m || j < 0 || j >= n ||   mat[i][j] === 0 || visited[i][j]) {  return -1;   }    // Mark current cell as visited  visited[i][j] = true;    let maxPath = -1;    // Four possible moves: up down left right  const row = [-1 1 0 0];  const col = [0 0 -1 1];    for (let k = 0; k < 4; k++) {  const ni = i + row[k];  const nj = j + col[k];    const pathLength = dfs(mat visited   ni nj x y);    // If a valid path is found from this direction  if (pathLength !== -1) {  maxPath = Math.max(maxPath 1 + pathLength);  }  }    // Backtrack - unmark current cell  visited[i][j] = false;    return maxPath; } function findLongestPath(mat xs ys xd yd) {  const m = mat.length;  const n = mat[0].length;    // Check if source or destination is blocked  if (mat[xs][ys] === 0 || mat[xd][yd] === 0) {  return -1;  }    const visited = Array(m).fill().map(() => Array(n).fill(false));  return dfs(mat visited xs ys xd yd); }  const mat = [  [1 1 1 1 1 1 1 1 1 1]  [1 1 0 1 1 0 1 1 0 1]  [1 1 1 1 1 1 1 1 1 1]  ];    const xs = 0 ys = 0;   const xd = 1 yd = 7;     const result = findLongestPath(mat xs ys xd yd);    if (result !== -1)  console.log(result);  else  console.log(-1); 

Lähtö
24 

Aika monimutkaisuus: O(4^(m*n)) Jokaiselle m x n -matriisin solulle algoritmi tutkii jopa neljää mahdollista suuntaa (ylös alas vasemmalle oikealle), mikä johtaa eksponentiaaliseen määrään polkuja. Pahimmassa tapauksessa se tutkii kaikkia mahdollisia polkuja, jolloin aikamonimutkaisuus on 4^(m*n).
Aputila: O(m*n) Algoritmi käyttää m x n vierailtua matriisia seuraamaan vierailtuja soluja ja rekursiopinoa, joka voi kasvaa m * n:n syvyyteen pahimmassa tapauksessa (esim. kun tutkitaan kaikki solut kattavaa polkua). Siten apuavaruus on O(m*n).

[Optimoitu lähestymistapa] ilman ylimääräistä tilaa

Erillisen vierailumatriisin ylläpitämisen sijaan voimme käytä syöttömatriisia uudelleen vierailtujen solujen merkitsemiseen läpikäynnin aikana. Tämä säästää ylimääräistä tilaa ja varmistaa silti, että emme palaa samaan soluun polussa.



govinda näyttelijä

Alla on vaiheittainen lähestymistapa:

  1. Aloita lähdesolusta(xs ys).
  2. Tutki jokaisessa vaiheessa kaikkia neljää mahdollista suuntaa (oikea alas vasen ylös).
  3. Jokaiselle kelvolliselle siirrolle:
    • Tarkista rajat ja varmista, että solulla on arvoa1(vapaa solu).
    • Merkitse solu vierailluksi asettamalla se tilapäisesti arvoon0.
    • Palaa seuraavaan soluun ja lisää polun pituutta.
  4. Jos kohdesolu(xd yd)on saavutettu, vertaa nykyistä polun pituutta tähän mennessä maksimissaan ja päivitä vastaus.
  5. Takaisin: palauta solun alkuperäinen arvo (1) ennen paluuta, jotta muut polut voivat tutkia sitä.
  6. Jatka tutkimista, kunnes kaikki mahdolliset polut on käyty.
  7. Palauta polun enimmäispituus. Jos määränpäähän ei ole tavoitettavissa, palauta-1
C++
#include    #include  #include  #include    using namespace std; // Function to find the longest path using backtracking without extra space int dfs(vector<vector<int>> &mat int i int j int x int y) {  int m = mat.size();  int n = mat[0].size();    // If destination is reached  if (i == x && j == y) {  return 0;  }    // If cell is invalid or blocked (0 means blocked or visited)  if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) {  return -1;   }    // Mark current cell as visited by temporarily setting it to 0  mat[i][j] = 0;    int maxPath = -1;    // Four possible moves: up down left right  int row[] = {-1 1 0 0};  int col[] = {0 0 -1 1};    for (int k = 0; k < 4; k++) {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1) {  maxPath = max(maxPath 1 + pathLength);  }  }    // Backtrack - restore the cell's original value (1)  mat[i][j] = 1;    return maxPath; } int findLongestPath(vector<vector<int>> &mat int xs int ys int xd int yd) {  int m = mat.size();  int n = mat[0].size();    // Check if source or destination is blocked  if (mat[xs][ys] == 0 || mat[xd][yd] == 0) {  return -1;  }    return dfs(mat xs ys xd yd); } int main() {  vector<vector<int>> mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = findLongestPath(mat xs ys xd yd);    if (result != -1)  cout << result << endl;  else  cout << -1 << endl;    return 0; } 
Java
public class GFG {    // Function to find the longest path using backtracking without extra space  public static int dfs(int[][] mat int i int j int x int y) {  int m = mat.length;  int n = mat[0].length;    // If destination is reached  if (i == x && j == y) {  return 0;  }    // If cell is invalid or blocked (0 means blocked or visited)  if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] == 0) {  return -1;   }    // Mark current cell as visited by temporarily setting it to 0  mat[i][j] = 0;    int maxPath = -1;    // Four possible moves: up down left right  int[] row = {-1 1 0 0};  int[] col = {0 0 -1 1};    for (int k = 0; k < 4; k++) {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1) {  maxPath = Math.max(maxPath 1 + pathLength);  }  }    // Backtrack - restore the cell's original value (1)  mat[i][j] = 1;    return maxPath;  }    public static int findLongestPath(int[][] mat int xs int ys int xd int yd) {  int m = mat.length;  int n = mat[0].length;    // Check if source or destination is blocked  if (mat[xs][ys] == 0 || mat[xd][yd] == 0) {  return -1;  }    return dfs(mat xs ys xd yd);  }    public static void main(String[] args) {  int[][] mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = findLongestPath(mat xs ys xd yd);    if (result != -1)  System.out.println(result);  else  System.out.println(-1);  } } 
Python
# Function to find the longest path using backtracking without extra space def dfs(mat i j x y): m = len(mat) n = len(mat[0]) # If destination is reached if i == x and j == y: return 0 # If cell is invalid or blocked (0 means blocked or visited) if i < 0 or i >= m or j < 0 or j >= n or mat[i][j] == 0: return -1 # Mark current cell as visited by temporarily setting it to 0 mat[i][j] = 0 maxPath = -1 # Four possible moves: up down left right row = [-1 1 0 0] col = [0 0 -1 1] for k in range(4): ni = i + row[k] nj = j + col[k] pathLength = dfs(mat ni nj x y) # If a valid path is found from this direction if pathLength != -1: maxPath = max(maxPath 1 + pathLength) # Backtrack - restore the cell's original value (1) mat[i][j] = 1 return maxPath def findLongestPath(mat xs ys xd yd): m = len(mat) n = len(mat[0]) # Check if source or destination is blocked if mat[xs][ys] == 0 or mat[xd][yd] == 0: return -1 return dfs(mat xs ys xd yd) def main(): mat = [ [1 1 1 1 1 1 1 1 1 1] [1 1 0 1 1 0 1 1 0 1] [1 1 1 1 1 1 1 1 1 1] ] xs ys = 0 0 xd yd = 1 7 result = findLongestPath(mat xs ys xd yd) if result != -1: print(result) else: print(-1) if __name__ == '__main__': main() 
C#
using System; class GFG {  // Function to find the longest path using backtracking without extra space  static int dfs(int[] mat int i int j int x int y)  {  int m = mat.GetLength(0);  int n = mat.GetLength(1);    // If destination is reached  if (i == x && j == y)  {  return 0;  }    // If cell is invalid or blocked (0 means blocked or visited)  if (i < 0 || i >= m || j < 0 || j >= n || mat[i j] == 0)  {  return -1;   }    // Mark current cell as visited by temporarily setting it to 0  mat[i j] = 0;    int maxPath = -1;    // Four possible moves: up down left right  int[] row = {-1 1 0 0};  int[] col = {0 0 -1 1};    for (int k = 0; k < 4; k++)  {  int ni = i + row[k];  int nj = j + col[k];    int pathLength = dfs(mat ni nj x y);    // If a valid path is found from this direction  if (pathLength != -1)  {  maxPath = Math.Max(maxPath 1 + pathLength);  }  }    // Backtrack - restore the cell's original value (1)  mat[i j] = 1;    return maxPath;  }    static int FindLongestPath(int[] mat int xs int ys int xd int yd)  {  // Check if source or destination is blocked  if (mat[xs ys] == 0 || mat[xd yd] == 0)  {  return -1;  }    return dfs(mat xs ys xd yd);  }    static void Main()  {  int[] mat = {  {1 1 1 1 1 1 1 1 1 1}  {1 1 0 1 1 0 1 1 0 1}  {1 1 1 1 1 1 1 1 1 1}  };    int xs = 0 ys = 0;   int xd = 1 yd = 7;     int result = FindLongestPath(mat xs ys xd yd);    if (result != -1)  Console.WriteLine(result);  else  Console.WriteLine(-1);  } } 
JavaScript
// Function to find the longest path using backtracking without extra space function dfs(mat i j x y) {  const m = mat.length;  const n = mat[0].length;    // If destination is reached  if (i === x && j === y) {  return 0;  }    // If cell is invalid or blocked (0 means blocked or visited)  if (i < 0 || i >= m || j < 0 || j >= n || mat[i][j] === 0) {  return -1;   }    // Mark current cell as visited by temporarily setting it to 0  mat[i][j] = 0;    let maxPath = -1;    // Four possible moves: up down left right  const row = [-1 1 0 0];  const col = [0 0 -1 1];    for (let k = 0; k < 4; k++) {  const ni = i + row[k];  const nj = j + col[k];    const pathLength = dfs(mat ni nj x y);    // If a valid path is found from this direction  if (pathLength !== -1) {  maxPath = Math.max(maxPath 1 + pathLength);  }  }    // Backtrack - restore the cell's original value (1)  mat[i][j] = 1;    return maxPath; } function findLongestPath(mat xs ys xd yd) {  const m = mat.length;  const n = mat[0].length;    // Check if source or destination is blocked  if (mat[xs][ys] === 0 || mat[xd][yd] === 0) {  return -1;  }    return dfs(mat xs ys xd yd); }  const mat = [  [1 1 1 1 1 1 1 1 1 1]  [1 1 0 1 1 0 1 1 0 1]  [1 1 1 1 1 1 1 1 1 1]  ];    const xs = 0 ys = 0;   const xd = 1 yd = 7;     const result = findLongestPath(mat xs ys xd yd);    if (result !== -1)  console.log(result);  else  console.log(-1); 

Lähtö
24 

Aika monimutkaisuus: O(4^(m*n))Algoritmi tutkii edelleen jopa neljää suuntaa solua kohden m x n -matriisissa, mikä johtaa eksponentiaaliseen määrään polkuja. Paikalla tehty muunnos ei vaikuta tutkittujen polkujen määrään, joten aikamonimutkaisuus pysyy 4^(m*n).
Aputila: O(m*n) Vaikka vierailtu matriisi eliminoidaan muokkaamalla syöttömatriisia paikan päällä, rekursiopino vaatii silti O(m*n) tilaa, koska maksimi rekursisyvyys voi olla m * n pahimmassa tapauksessa (esim. polku, joka vierailee ruudukon kaikissa soluissa, joissa on enimmäkseen 1 sekuntia).