logo

Tarkista, onko numero palindromi

Kun annetaan positiivinen kokonaisluku, kirjoita funktio, joka palauttaa tosi, jos annettu luku on palindromi, muuten epätosi. Esimerkiksi 12321 on palindromi, mutta 1451 ei ole palindromi.



Suositeltu harjoitusnumero on Pallindromi tai älä kokeile!

Tapa 1:

kruskals-algoritmi

Olkoon annettu numero yhdellä . Yksinkertainen tapa ratkaista tämä ongelma on ensin käänteiset numerot yhdellä , vertaa sitten käänteistä yhdellä kanssa yhdellä . Jos molemmat ovat samoja, palauta tosi, muuten epätosi.

Seuraavassa on mielenkiintoinen menetelmä, joka on saanut inspiraationsa menetelmästä nro 2 Tämä lähettää. Ajatuksena on luoda kopio yhdellä ja välitä kopio rekursiivisesti viitteellä ja ohita yhdellä arvon mukaan. Rekursiivisissa kutsuissa jaa yhdellä 10, kun siirryt alaspäin rekursiopuuta. Kun siirryt ylöspäin rekursiopuussa, jaa kopio 10:llä. Kun he kohtaavat funktiossa, jonka kaikki lapsikutsut ovat ohi, viimeinen numero yhdellä on i:s numero alusta ja kopion viimeinen numero on i:s numero lopusta.



C++






// A recursive C++ program to check> // whether a given number> // is palindrome or not> #include> using> namespace> std;> > // A function that returns true only> // if num contains one> // digit> int> oneDigit(>int> num)> {> > >// Comparison operation is faster> >// than division> >// operation. So using following> >// instead of 'return num> >// / 10 == 0;'> >return> (num>= 0 && num<10);> }> > // A recursive function to find> // out whether num is> // palindrome or not. Initially, dupNum> // contains address of> // a copy of num.> bool> isPalUtil(>int> num,>int>* dupNum)> {> > >// Base case (needed for recursion> >// termination): This> >// statement mainly compares the> >// first digit with the> >// last digit> >if> (oneDigit(num))> >return> (num == (*dupNum) % 10);> > >// This is the key line in this> >// method. Note that all> >// recursive calls have a separate> >// copy of num, but they> >// all share same copy of *dupNum.> >// We divide num while> >// moving up the recursion tree> >if> (!isPalUtil(num / 10, dupNum))> >return> false>;> > >// The following statements are> >// executed when we move up> >// the recursion call tree> >*dupNum /= 10;> > >// At this point, if num%10 contains> >// i'th digit from> >// beginning, then (*dupNum)%10> >// contains i'th digit> >// from end> >return> (num % 10 == (*dupNum) % 10);> }> > // The main function that uses> // recursive function> // isPalUtil() to find out whether> // num is palindrome or not> int> isPal(>int> num)> {> > >// Check if num is negative,> >// make it positive> >if> (num <0)> >num = -num;> > >// Create a separate copy of num,> >// so that modifications> >// made to address dupNum don't> >// change the input number.> >// *dupNum = num> >int>* dupNum =>new> int>(num);> > >return> isPalUtil(num, dupNum);> }> > // Driver program to test> // above functions> int> main()> {> >int> n = 12321;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 12;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 88;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'> << endl;> > >n = 8999;> >isPal(n) ? cout <<>'Yes '>: cout <<>'No'>;> >return> 0;> }> > // this code is contributed by shivanisinghss2110>

>

>

C




#include> #include> > // A function that returns true only> // if num contains one digit> int> oneDigit(>int> num)> {> >// Comparison operation is faster> >// than division operation.> >// So using the following instead of 'return num / 10 == 0;'> >return> (num>= 0 && num<10);> }> > // A recursive function to find out whether> // num is palindrome or not.> // Initially, dupNum contains the address of a copy of num.> bool> isPalUtil(>int> num,>int>* dupNum)> {> >// Base case (needed for recursion termination):> >// This statement mainly compares the first digit with the last digit.> >if> (oneDigit(num))> >return> (num == (*dupNum) % 10);> > >// This is the key line in this method.> >// Note that all recursive calls have a separate copy of num,> >// but they all share the same copy of *dupNum.> >// We divide num while moving up the recursion tree.> >if> (!isPalUtil(num / 10, dupNum))> >return> false>;> > >// The following statements are executed when we move up the recursion call tree.> >*dupNum /= 10;> > >// At this point, if num % 10 contains the i'th digit from the beginning,> >// then (*dupNum) % 10 contains the i'th digit from the end.> >return> (num % 10 == (*dupNum) % 10);> }> > // The main function that uses the recursive function> // isPalUtil() to find out whether num is palindrome or not.> bool> isPal(>int> num)> {> >// Check if num is negative, make it positive.> >if> (num <0)> >num = -num;> > >// Create a separate copy of num, so that modifications> >// made to the address dupNum don't change the input number.> >int> dupNum = num;> > >return> isPalUtil(num, &dupNum);> }> > // Driver program to test above functions> int> main()> {> >int> n = 12321;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 12;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 88;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >n = 8999;> >isPal(n) ?>printf>(>'Yes '>) :>printf>(>'No '>);> > >return> 0;> }>

>

>

Java




// A recursive Java program to> // check whether a given number> // is palindrome or not> import> java.io.*;> import> java.util.*;> > public> class> CheckPalindromeNumberRecursion {> > >// A function that returns true> >// only if num contains one digit> >public> static> int> oneDigit(>int> num) {> > >if> ((num>=>0>) && (num <>10>))> >return> 1>;> >else> >return> 0>;> >}> > >public> static> int> isPalUtil> >(>int> num,>int> dupNum)>throws> Exception {> > >// base condition to return once we> >// move past first digit> >if> (num ==>0>) {> >return> dupNum;> >}>else> {> >dupNum = isPalUtil(num />10>, dupNum);> >}> > >// Check for equality of first digit of> >// num and dupNum> >if> (num %>10> == dupNum %>10>) {> >// if first digit values of num and> >// dupNum are equal divide dupNum> >// value by 10 to keep moving in sync> >// with num.> >return> dupNum />10>;> >}>else> {> >// At position values are not> >// matching throw exception and exit.> >// no need to proceed further.> >throw> new> Exception();> >}> > >}> > >public> static> int> isPal(>int> num)> >throws> Exception {> > >if> (num <>0>)> >num = (-num);> > >int> dupNum = (num);> > >return> isPalUtil(num, dupNum);> >}> > >public> static> void> main(String args[]) {> > >int> n =>12421>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> >n =>1231>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>12>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>88>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> > >n =>8999>;> >try> {> >isPal(n);> >System.out.println(>'Yes'>);> >}>catch> (Exception e) {> >System.out.println(>'No'>);> >}> >}> }> > // This code is contributed> // by Nasir J>

>

>

Python 3




# A recursive Python3 program to check> # whether a given number is palindrome or not> > # A function that returns true> # only if num contains one digit> def> oneDigit(num):> > ># comparison operation is faster> ># than division operation. So> ># using following instead of> ># 'return num / 10 == 0;'> >return> ((num>>>0>)>and> >(num <>10>))> > # A recursive function to find> # out whether num is palindrome> # or not. Initially, dupNum> # contains address of a copy of num.> def> isPalUtil(num, dupNum):> > ># Base case (needed for recursion> ># termination): This statement> ># mainly compares the first digit> ># with the last digit> >if> oneDigit(num):> >return> (num>=>=> (dupNum[>0>])>%> 10>)> > ># This is the key line in this> ># method. Note that all recursive> ># calls have a separate copy of> ># num, but they all share same> ># copy of *dupNum. We divide num> ># while moving up the recursion tree> >if> not> isPalUtil(num>/>/>10>, dupNum):> >return> False> > ># The following statements are> ># executed when we move up the> ># recursion call tree> >dupNum[>0>]>=> dupNum[>0>]>/>/>10> > ># At this point, if num%10> ># contains i'th digit from> ># beginning, then (*dupNum)%10> ># contains i'th digit from end> >return> (num>%> 10> =>=> (dupNum[>0>])>%> 10>)> > # The main function that uses> # recursive function isPalUtil()> # to find out whether num is> # palindrome or not> def> isPal(num):> ># If num is negative,> ># make it positive> >if> (num <>0>):> >num>=> (>->num)> > ># Create a separate copy of> ># num, so that modifications> ># made to address dupNum> ># don't change the input number.> >dupNum>=> [num]># *dupNum = num> > >return> isPalUtil(num, dupNum)> > # Driver Code> n>=> 12321> if> isPal(n):> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 12> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 88> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > n>=> 8999> if> isPal(n) :> >print>(>'Yes'>)> else>:> >print>(>'No'>)> > # This code is contributed by mits>

>

>

C#




// A recursive C# program to> // check whether a given number> // is palindrome or not> using> System;> > class> GFG> {> > // A function that returns true> // only if num contains one digit> public> static> int> oneDigit(>int> num)> {> >// comparison operation is> >// faster than division> >// operation. So using> >// following instead of> >// 'return num / 10 == 0;'> >if>((num>= 0) &&(nm<10))> >return> 1;> >else> >return> 0;> }> > // A recursive function to> // find out whether num is> // palindrome or not.> // Initially, dupNum contains> // address of a copy of num.> public> static> int> isPalUtil(>int> num,> >int> dupNum)> {> >// Base case (needed for recursion> >// termination): This statement> >// mainly compares the first digit> >// with the last digit> >if> (oneDigit(num) == 1)> >if>(num == (dupNum) % 10)> >return> 1;> >else> >return> 0;> > >// This is the key line in> >// this method. Note that> >// all recursive calls have> >// a separate copy of num,> >// but they all share same> >// copy of *dupNum. We divide> >// num while moving up the> >// recursion tree> >if> (isPalUtil((>int>)(num / 10), dupNum) == 0)> >return> -1;> > >// The following statements> >// are executed when we move> >// up the recursion call tree> >dupNum = (>int>)(dupNum / 10);> > >// At this point, if num%10> >// contains i'th digit from> >// beginning, then (*dupNum)%10> >// contains i'th digit from end> >if>(num % 10 == (dupNum) % 10)> >return> 1;> >else> >return> 0;> }> > // The main function that uses> // recursive function isPalUtil()> // to find out whether num is> // palindrome or not> public> static> int> isPal(>int> num)> {> >// If num is negative,> >// make it positive> >if> (num <0)> >num = (-num);> > >// Create a separate copy> >// of num, so that modifications> >// made to address dupNum> >// don't change the input number.> >int> dupNum = (num);>// *dupNum = num> > >return> isPalUtil(num, dupNum);> }> > // Driver Code> public> static> void> Main()> {> int> n = 12321;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 12;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 88;> if>(isPal(n) == 1)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> > n = 8999;> if>(isPal(n) == 0)> >Console.WriteLine(>'Yes'>);> else> >Console.WriteLine(>'No'>);> }> }> > // This code is contributed by mits>

>

>

Javascript




> // A recursive javascript program to> // check whether a given number> // is palindrome or not> > >// A function that returns true> >// only if num contains one digit> >function> oneDigit(num) {> > >if> ((num>= 0) && (nm<10))> >return> 1;> >else> >return> 0;> >}> > >function> isPalUtil> >(num , dupNum) {> > >// base condition to return once we> >// move past first digit> >if> (num == 0) {> >return> dupNum;> >}>else> {> >dupNum = isPalUtil(parseInt(num / 10), dupNum);> >}> > >// Check for equality of first digit of> >// num and dupNum> >if> (num % 10 == dupNum % 10) {> >// if first digit values of num and> >// dupNum are equal divide dupNum> >// value by 10 to keep moving in sync> >// with num.> >return> parseInt(dupNum / 10);> >}>else> {> >// At position values are not> >// matching throw exception and exit.> >// no need to proceed further.> >throw> e;> >}> > >}> > >function> isPal(num)> >{> > >if> (num <0)> >num = (-num);> > >var> dupNum = (num);> > >return> isPalUtil(num, dupNum);> >}> > > > >var> n = 1242;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> >n = 1231;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 12;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 88;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > >n = 8999;> >try> {> >isPal(n);> >document.write(>' Yes'>);> >}>catch> (e) {> >document.write(>' No'>);> >}> > // This code is contributed by Amit Katiyar> >

>

>

govinda näyttelijä

PHP




// A recursive PHP program to // check whether a given number // is palindrome or not // A function that returns true // only if num contains one digit function oneDigit($num) { // comparison operation is faster // than division operation. So // using following instead of // 'return num / 10 == 0;' return (($num>= 0) && ($num<10)); } // A recursive function to find // out whether num is palindrome // or not. Initially, dupNum // contains address of a copy of num. function isPalUtil($num, $dupNum) { // Base case (needed for recursion // termination): This statement // mainly compares the first digit // with the last digit if (oneDigit($num)) return ($num == ($dupNum) % 10); // This is the key line in this // method. Note that all recursive // calls have a separate copy of // num, but they all share same // copy of *dupNum. We divide num // while moving up the recursion tree if (!isPalUtil((int)($num / 10), $dupNum)) return -1; // The following statements are // executed when we move up the // recursion call tree $dupNum = (int)($dupNum / 10); // At this point, if num%10 // contains i'th digit from // beginning, then (*dupNum)%10 // contains i'th digit from end return ($num % 10 == ($dupNum) % 10); } // The main function that uses // recursive function isPalUtil() // to find out whether num is // palindrome or not function isPal($num) { // If num is negative, // make it positive if ($num <0) $num = (-$num); // Create a separate copy of // num, so that modifications // made to address dupNum // don't change the input number. $dupNum = ($num); // *dupNum = num return isPalUtil($num, $dupNum); } // Driver Code $n = 12321; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; $n = 12; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; $n = 88; if(isPal($n) == 1) echo 'Yes '; else echo 'No '; $n = 8999; if(isPal($n) == 0) echo 'Yes '; else echo 'No '; // This code is contributed by m_kit ?>>>

> 

Yes No Yes No>

Aika monimutkaisuus: O(log n)
Aputila: O(log n)

Numeron tarkistaminen on palindromi vai ei ilman ylimääräistä tilaa
Tapa 2: String()-menetelmän käyttäminen

  • Kun kyseisen luvun numeroiden määrä ylittää 1018, emme voi pitää tätä lukua kokonaislukuna, koska long long int -alue ei täytä annettua lukua.
  • Käytä siis syötettä merkkijonona, suorita silmukka alusta pituuteen/2 ja tarkista ensimmäinen merkki (numeerinen) merkkijonon viimeiseen merkkiin ja toisesta toiseksi viimeiseen merkkiin ja niin edelleen… Jos jokin merkki ei täsmää, merkkijono ei olisi palindromi.

Alla on edellä mainitun lähestymistavan toteutus

C++14




// C++ implementation of the above approach> #include> using> namespace> std;> > // Function to check palindrome> int> checkPalindrome(string str)> {> >// Calculating string length> >int> len = str.length();> > >// Traversing through the string> >// upto half its length> >for> (>int> i = 0; i // Comparing i th character // from starting and len-i // th character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then it is // palindrome return true; } // Driver Code int main() { // taking number as string string st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) cout << 'Yes'; else cout << 'No'; return 0; } // this code is written by vikkycirus>

>

>

Java




python muuntaa tavut merkkijonoksi

// Java implementation of the above approach> import> java.io.*;> > class> GFG{> > // Function to check palindrome> static> boolean> checkPalindrome(String str)> {> > >// Calculating string length> >int> len = str.length();> > >// Traversing through the string> >// upto half its length> >for>(>int> i =>0>; i 2; i++) { // Comparing i th character // from starting and len-i // th character from end if (str.charAt(i) != str.charAt(len - i - 1)) return false; } // If the above loop doesn't return then // it is palindrome return true; } // Driver Code public static void main(String[] args) { // Taking number as string String st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) System.out.print('Yes'); else System.out.print('No'); } } // This code is contributed by subhammahato348>

>

>

Python 3




# Python3 implementation of the above approach> > # function to check palindrome> def> checkPalindrome(>str>):> > ># Run loop from 0 to len/2> >for> i>in> range>(>0>,>len>(>str>)>/>/>2>):> >if> str>[i] !>=> str>[>len>(>str>)>->i>->1>]:> >return> False> > ># If the above loop doesn't> >#return then it is palindrome> >return> True> > > # Driver code> st>=> '112233445566778899000000998877665544332211'> if>(checkPalindrome(st)>=>=> True>):> >print>(>'it is a palindrome'>)> else>:> >print>(>'It is not a palindrome'>)>

>

>

C#




// C# implementation of the above approach> using> System;> > class> GFG{> > // Function to check palindrome> static> bool> checkPalindrome(>string> str)> {> > >// Calculating string length> >int> len = str.Length;> > >// Traversing through the string> >// upto half its length> >for>(>int> i = 0; i { // Comparing i th character // from starting and len-i // th character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then // it is palindrome return true; } // Driver Code public static void Main() { // Taking number as string string st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) Console.Write('Yes'); else Console.Write('No'); } } // This code is contributed by subhammahato348>

>

>

Javascript




> > // Javascript implementation of the above approach> > // Function to check palindrome> function> checkPalindrome(str)> {> >// Calculating string length> >var> len = str.length;> > >// Traversing through the string> >// upto half its length> >for> (>var> i = 0; i // Comparing ith character // from starting and len-ith // character from end if (str[i] != str[len - i - 1]) return false; } // If the above loop doesn't return then it is // palindrome return true; } // Driver Code // taking number as string let st = '112233445566778899000000998877665544332211'; if (checkPalindrome(st) == true) document.write('Yes'); else document.write('No'); // This code is contributed by Mayank Tyagi>

>

>

Lähtö

Yes>

Aika monimutkaisuus: O(|str|)
Aputila : O(1)

Tapa 3:

Tässä on yksinkertaisin tapa tarkistaa, onko numero palindromi vai ei. Tätä lähestymistapaa voidaan käyttää, kun annetussa luvussa olevien numeroiden määrä on pienempi kuin 10^18, koska jos numeroiden lukumäärä ylittää 10^18, emme voi ottaa sitä kokonaislukuna, koska alue on pitkä pitkä. int ei täytä annettua numeroa.

Tarkistaaksemme, onko annettu luku palindromi vai ei, käännämme vain annetun luvun numerot ja tarkistamme, onko luvun käänteinen sama kuin alkuperäinen luku vai ei. Jos numeron käänteinen luku on sama kuin tämä luku, luku on palindromi, muuten se ei ole palindromi.

C++




jäsentää merkkijono int
// C++ program to check if a number is Palindrome> #include> using> namespace> std;> // Function to check Palindrome> bool> checkPalindrome(>int> n)> {> >int> reverse = 0;> >int> temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = temp / 10;> >}> >return> (reverse> >== n);>// if it is true then it will return 1;> >// else if false it will return 0;> }> int> main()> {> >int> n = 7007;> >if> (checkPalindrome(n) == 1) {> >cout <<>'Yes '>;> >}> >else> {> >cout <<>'No '>;> >}> >return> 0;> }> // This code is contributed by Suruchi Kumari>

>

>

Java




/*package whatever //do not write package name here */> > import> java.io.*;> > class> GFG {> >// Java program to check if a number is Palindrome> > >// Function to check Palindrome> >static> boolean> checkPalindrome(>int> n)> >{> >int> reverse =>0>;> >int> temp = n;> >while> (temp !=>0>) {> >reverse = (reverse *>10>) + (temp %>10>);> >temp = temp />10>;> >}> >return> (reverse == n);>// if it is true then it will return 1;> >// else if false it will return 0;> >}> > >// Driver Code> >public> static> void> main(String args[])> >{> >int> n =>7007>;> >if> (checkPalindrome(n) ==>true>) {> >System.out.println(>'Yes'>);> >}> >else> {> >System.out.println(>'No'>);> >}> >}> }> > // This code is contributed by shinjanpatra>

>

>

Python 3




# Python3 program to check if a number is Palindrome> > # Function to check Palindrome> def> checkPalindrome(n):> > >reverse>=> 0> >temp>=> n> >while> (temp !>=> 0>):> >reverse>=> (reverse>*> 10>)>+> (temp>%> 10>)> >temp>=> temp>/>/> 10> > >return> (reverse>=>=> n)># if it is true then it will return 1;> ># else if false it will return 0;> > # driver code> n>=> 7007> if> (checkPalindrome(n)>=>=> 1>):> >print>(>'Yes'>)> > else>:> >print>(>'No'>)> > # This code is contributed by shinjanpatra>

>

>

C#

edith mack hirsch




// C# program to check if a number is Palindrome> > using> System;> > class> GFG {> > >// Function to check Palindrome> >static> bool> checkPalindrome(>int> n)> >{> >int> reverse = 0;> >int> temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = temp / 10;> >}> >return> (> >reverse> >== n);>// if it is true then it will return 1;> >// else if false it will return 0;> >}> > >// Driver Code> >public> static> void> Main(>string>[] args)> >{> >int> n = 7007;> >if> (checkPalindrome(n) ==>true>) {> >Console.WriteLine(>'Yes'>);> >}> >else> {> >Console.WriteLine(>'No'>);> >}> >}> }> > // This code is contributed by phasing17>

>

>

Javascript




> > // JavaScript program to check if a number is Palindrome> > // Function to check Palindrome> function> checkPalindrome(n)> {> >let reverse = 0;> >let temp = n;> >while> (temp != 0) {> >reverse = (reverse * 10) + (temp % 10);> >temp = Math.floor(temp / 10);> >}> >return> (reverse == n);>// if it is true then it will return 1;> >// else if false it will return 0;> }> > // driver code> > let n = 7007;> if> (checkPalindrome(n) == 1) {> >document.write(>'Yes'>,>''>);> }> else> {> >document.write(>'No'>,>''>);> }> > > // This code is contributed by shinjanpatra> > >

>

>

Lähtö

Yes>

Aika monimutkaisuus: O(log10(n)) tai O (tietyn luvun numeroiden määrä)
Aputila : O(1) tai vakio

Tämän artikkelin on koonnutAshish Barnwal.