Kun annetaan n tasaisesti jakautuneen arvon lajiteltu taulukko, arr[] kirjoita funktio, joka etsii tiettyä elementtiä x taulukosta.
Lineaarinen haku löytää elementin O(n) ajassa Jump Search kestää O(n) aikaa ja Binäärihaku kestää O(log n) aikaa.
Interpolaatiohaku on parannus verrattuna Binäärihaku tapauksia, joissa lajitellun taulukon arvot jakautuvat tasaisesti. Interpolointi rakentaa uusia datapisteitä tunnettujen tietopisteiden diskreetin joukon alueelle. Binäärihaku menee aina keskimmäiseen elementtiin tarkistaakseen. Toisaalta interpolaatiohaku voi mennä eri paikkoihin haettavan avaimen arvon mukaan. Esimerkiksi jos avaimen arvo on lähempänä viimeistä elementtiä, interpolointihaku aloittaa todennäköisesti haun loppupuolella.
Etsittävän paikan löytämiseksi se käyttää seuraavaa kaavaa.
// Kaavan ideana on palauttaa suurempi pos-arvo
// kun haettava elementti on lähempänä arr[hi]. Ja
// pienempi arvo, kun lähempänä arr[lo]
arr[] ==> Taulukko, josta elementtejä täytyy etsiä
x ==> Haettava elementti
lo ==> Aloitusindeksi arr[]
hei ==> Päättyy hakemistoon arr[]
jälkeen = +
On olemassa monia erilaisia interpolointimenetelmiä, joista yksi tunnetaan lineaarisena interpolaationa. Lineaarinen interpolointi ottaa kaksi datapistettä, jotka oletamme muotoina (x1y1) ja (x2y2), ja kaava on: pisteessä(xy).
komento chown
Tämä algoritmi toimii tavalla, jolla etsimme sanaa sanakirjasta. Interpolaatiohakualgoritmi parantaa binaarihakualgoritmia. Kaava arvon löytämiseksi on: K = >K on vakio, jota käytetään kaventamaan hakuavaruutta. Binäärihaun tapauksessa tämän vakion arvo on: K=(matala+korkea)/2.
Pos:n kaava voidaan johtaa seuraavasti.
Let's assume that the elements of the array are linearly distributed.
General equation of line : y = m*x + c.
y is the value in the array and x is its index.
Now putting value of lohi and x in the equation
arr[hi] = m*hi+c ----(1)
arr[lo] = m*lo+c ----(2)
x = m*pos + c ----(3)
m = (arr[hi] - arr[lo] )/ (hi - lo)
subtracting eqxn (2) from (3)
x - arr[lo] = m * (pos - lo)
lo + (x - arr[lo])/m = pos
pos = lo + (x - arr[lo]) *(hi - lo)/(arr[hi] - arr[lo])
Algoritmi
Interpolointialgoritmin loppuosa on sama paitsi yllä oleva osiologiikka.
- Vaihe 1: Laske silmukassa 'pos':n arvo käyttämällä anturin sijaintikaavaa.
- Vaihe2: Jos se täsmää, palauta kohteen indeksi ja poistu.
- Vaihe 3: Jos kohde on pienempi kuin arr[pos], laske vasemman alitaulukon mittauspaikka. Muussa tapauksessa laske sama oikeasta alitaulukosta.
- Vaihe 4: Toista, kunnes vastaavuus löytyy tai alitaulukko pienenee nollaan.
Alla on algoritmin toteutus.
// C++ program to implement interpolation // search with recursion #include using namespace std; // If x is present in arr[0..n-1] then returns // index of it else returns -1. int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code int main() { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = sizeof(arr) / sizeof(arr[0]); // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) cout << 'Element found at index ' << index; else cout << 'Element not found.'; return 0; } // This code is contributed by equbalzeeshan
C // C program to implement interpolation search // with recursion #include // If x is present in arr[0..n-1] then returns // index of it else returns -1. int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((double)(hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code int main() { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = sizeof(arr) / sizeof(arr[0]); int x = 18; // Element to be searched int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) printf('Element found at index %d' index); else printf('Element not found.'); return 0; }
Java // Java program to implement interpolation // search with recursion import java.util.*; class GFG { // If x is present in arr[0..n-1] then returns // index of it else returns -1. public static int interpolationSearch(int arr[] int lo int hi int x) { int pos; // Since array is sorted an element // present in array must be in range // defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void main(String[] args) { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = arr.length; // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) System.out.println('Element found at index ' + index); else System.out.println('Element not found.'); } } // This code is contributed by equbalzeeshan
Python # Python3 program to implement # interpolation search # with recursion # If x is present in arr[0..n-1] then # returns index of it else returns -1. def interpolationSearch(arr lo hi x): # Since array is sorted an element present # in array must be in range defined by corner if (lo <= hi and x >= arr[lo] and x <= arr[hi]): # Probing the position with keeping # uniform distribution in mind. pos = lo + ((hi - lo) // (arr[hi] - arr[lo]) * (x - arr[lo])) # Condition of target found if arr[pos] == x: return pos # If x is larger x is in right subarray if arr[pos] < x: return interpolationSearch(arr pos + 1 hi x) # If x is smaller x is in left subarray if arr[pos] > x: return interpolationSearch(arr lo pos - 1 x) return -1 # Driver code # Array of items in which # search will be conducted arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47] n = len(arr) # Element to be searched x = 18 index = interpolationSearch(arr 0 n - 1 x) if index != -1: print('Element found at index' index) else: print('Element not found') # This code is contributed by Hardik Jain
C# // C# program to implement // interpolation search using System; class GFG{ // If x is present in // arr[0..n-1] then // returns index of it // else returns -1. static int interpolationSearch(int []arr int lo int hi int x) { int pos; // Since array is sorted an element // present in array must be in range // defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position // with keeping uniform // distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of // target found if(arr[pos] == x) return pos; // If x is larger x is in right sub array if(arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if(arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void Main() { // Array of items on which search will // be conducted. int []arr = new int[]{ 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; // Element to be searched int x = 18; int n = arr.Length; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) Console.WriteLine('Element found at index ' + index); else Console.WriteLine('Element not found.'); } } // This code is contributed by equbalzeeshan
JavaScript <script> // Javascript program to implement Interpolation Search // If x is present in arr[0..n-1] then returns // index of it else returns -1. function interpolationSearch(arr lo hi x){ let pos; // Since array is sorted an element present // in array must be in range defined by corner if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + Math.floor(((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo]));; // Condition of target found if (arr[pos] == x){ return pos; } // If x is larger x is in right sub array if (arr[pos] < x){ return interpolationSearch(arr pos + 1 hi x); } // If x is smaller x is in left sub array if (arr[pos] > x){ return interpolationSearch(arr lo pos - 1 x); } } return -1; } // Driver Code let arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47]; let n = arr.length; // Element to be searched let x = 18 let index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1){ document.write(`Element found at index ${index}`) }else{ document.write('Element not found'); } // This code is contributed by _saurabh_jaiswal </script>
PHP // PHP program to implement $erpolation search // with recursion // If x is present in arr[0..n-1] then returns // index of it else returns -1. function interpolationSearch($arr $lo $hi $x) { // Since array is sorted an element present // in array must be in range defined by corner if ($lo <= $hi && $x >= $arr[$lo] && $x <= $arr[$hi]) { // Probing the position with keeping // uniform distribution in mind. $pos = (int)($lo + (((double)($hi - $lo) / ($arr[$hi] - $arr[$lo])) * ($x - $arr[$lo]))); // Condition of target found if ($arr[$pos] == $x) return $pos; // If x is larger x is in right sub array if ($arr[$pos] < $x) return interpolationSearch($arr $pos + 1 $hi $x); // If x is smaller x is in left sub array if ($arr[$pos] > $x) return interpolationSearch($arr $lo $pos - 1 $x); } return -1; } // Driver Code // Array of items on which search will // be conducted. $arr = array(10 12 13 16 18 19 20 21 22 23 24 33 35 42 47); $n = sizeof($arr); $x = 47; // Element to be searched $index = interpolationSearch($arr 0 $n - 1 $x); // If element was found if ($index != -1) echo 'Element found at index '.$index; else echo 'Element not found.'; return 0; #This code is contributed by Susobhan Akhuli ?> Lähtö
Element found at index 4
Aika monimutkaisuus: O(log2(loki2n)) keskimääräiselle tapaukselle ja O(n) huonoimmalle tapaukselle
Aputilan monimutkaisuus: O(1)
Toinen lähestymistapa:
Tämä on iteraatiomenetelmä interpolaatiohakuun.
- Vaihe 1: Laske silmukassa 'pos':n arvo käyttämällä anturin sijaintikaavaa.
- Vaihe2: Jos se täsmää, palauta kohteen indeksi ja poistu.
- Vaihe 3: Jos kohde on pienempi kuin arr[pos], laske vasemman alitaulukon mittauspaikka. Muussa tapauksessa laske sama oikeasta alitaulukosta.
- Vaihe 4: Toista, kunnes vastaavuus löytyy tai alitaulukko pienenee nollaan.
Alla on algoritmin toteutus.
C++// C++ program to implement interpolation search by using iteration approach #include using namespace std; int interpolationSearch(int arr[] int n int x) { // Find indexes of two corners int low = 0 high = (n - 1); // Since array is sorted an element present // in array must be in range defined by corner while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) {if (arr[low] == x) return low; return -1; } // Probing the position with keeping // uniform distribution in mind. int pos = low + (((double)(high - low) / (arr[high] - arr[low])) * (x - arr[low])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in upper part if (arr[pos] < x) low = pos + 1; // If x is smaller x is in the lower part else high = pos - 1; } return -1; } // Main function int main() { // Array of items on whighch search will // be conducted. int arr[] = {10 12 13 16 18 19 20 21 22 23 24 33 35 42 47}; int n = sizeof(arr)/sizeof(arr[0]); int x = 18; // Element to be searched int index = interpolationSearch(arr n x); // If element was found if (index != -1) cout << 'Element found at index ' << index; else cout << 'Element not found.'; return 0; } //this code contributed by Ajay Singh
Java // Java program to implement interpolation // search with recursion import java.util.*; class GFG { // If x is present in arr[0..n-1] then returns // index of it else returns -1. public static int interpolationSearch(int arr[] int lo int hi int x) { int pos; if (lo <= hi && x >= arr[lo] && x <= arr[hi]) { // Probing the position with keeping // uniform distribution in mind. pos = lo + (((hi - lo) / (arr[hi] - arr[lo])) * (x - arr[lo])); // Condition of target found if (arr[pos] == x) return pos; // If x is larger x is in right sub array if (arr[pos] < x) return interpolationSearch(arr pos + 1 hi x); // If x is smaller x is in left sub array if (arr[pos] > x) return interpolationSearch(arr lo pos - 1 x); } return -1; } // Driver Code public static void main(String[] args) { // Array of items on which search will // be conducted. int arr[] = { 10 12 13 16 18 19 20 21 22 23 24 33 35 42 47 }; int n = arr.length; // Element to be searched int x = 18; int index = interpolationSearch(arr 0 n - 1 x); // If element was found if (index != -1) System.out.println('Element found at index ' + index); else System.out.println('Element not found.'); } }
Python # Python equivalent of above C++ code # Python program to implement interpolation search by using iteration approach def interpolationSearch(arr n x): # Find indexes of two corners low = 0 high = (n - 1) # Since array is sorted an element present # in array must be in range defined by corner while low <= high and x >= arr[low] and x <= arr[high]: if low == high: if arr[low] == x: return low; return -1; # Probing the position with keeping # uniform distribution in mind. pos = int(low + (((float(high - low)/( arr[high] - arr[low])) * (x - arr[low])))) # Condition of target found if arr[pos] == x: return pos # If x is larger x is in upper part if arr[pos] < x: low = pos + 1; # If x is smaller x is in lower part else: high = pos - 1; return -1 # Main function if __name__ == '__main__': # Array of items on whighch search will # be conducted. arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47] n = len(arr) x = 18 # Element to be searched index = interpolationSearch(arr n x) # If element was found if index != -1: print ('Element found at index'index) else: print ('Element not found')
C# // C# program to implement interpolation search by using // iteration approach using System; class Program { // Interpolation Search function static int InterpolationSearch(int[] arr int n int x) { int low = 0; int high = n - 1; while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) { if (arr[low] == x) return low; return -1; } int pos = low + (int)(((float)(high - low) / (arr[high] - arr[low])) * (x - arr[low])); if (arr[pos] == x) return pos; if (arr[pos] < x) low = pos + 1; else high = pos - 1; } return -1; } // Main function static void Main(string[] args) { int[] arr = {10 12 13 16 18 19 20 21 22 23 24 33 35 42 47}; int n = arr.Length; int x = 18; int index = InterpolationSearch(arr n x); if (index != -1) Console.WriteLine('Element found at index ' + index); else Console.WriteLine('Element not found'); } } // This code is contributed by Susobhan Akhuli
JavaScript // JavaScript program to implement interpolation search by using iteration approach function interpolationSearch(arr n x) { // Find indexes of two corners let low = 0; let high = n - 1; // Since array is sorted an element present // in array must be in range defined by corner while (low <= high && x >= arr[low] && x <= arr[high]) { if (low == high) { if (arr[low] == x) { return low; } return -1; } // Probing the position with keeping // uniform distribution in mind. let pos = Math.floor(low + (((high - low) / (arr[high] - arr[low])) * (x - arr[low]))); // Condition of target found if (arr[pos] == x) { return pos; } // If x is larger x is in upper part if (arr[pos] < x) { low = pos + 1; } // If x is smaller x is in lower part else { high = pos - 1; } } return -1; } // Main function let arr = [10 12 13 16 18 19 20 21 22 23 24 33 35 42 47]; let n = arr.length; let x = 18; // Element to be searched let index = interpolationSearch(arr n x); // If element was found if (index != -1) { console.log('Element found at index' index); } else { console.log('Element not found'); }
Lähtö
Element found at index 4
Aika monimutkaisuus: O(log2(log2 n)) keskimääräiselle tapaukselle ja O(n) huonoimmalle tapaukselle
Aputilan monimutkaisuus: O(1)