Sinulle annetaan a Bitoninen sekvenssi tehtävänä on löytää Bitoninen piste siinä. Bitoninen sekvenssi on numerosarja, joka on tiukasti ensimmäinen kasvaa sitten pisteen jälkeen tiukasti vähenee .
Bitoninen piste on bitonisen sekvenssin piste, jota ennen elementit kasvavat tiukasti ja jonka jälkeen elementit tiukasti vähenevät.
Huomautus: - Annettu sekvenssi on aina kelvollinen bitoninen sekvenssi.
Esimerkkejä:
Syöte: arr[] = {8 10 100 200 400 500 3 2 1}
Lähtö : 500
Syöte: arr[] = {10 20 30 40 30 20}
Lähtö : 40
Syöte : arr[] = {60 70 120 100 80}
Lähtö: 120
Sisällysluettelo
- [Naiivi lähestymistapa] Lineaarihaun käyttäminen - O(n) aika ja O(1) avaruus
- [Odotettu lähestymistapa] Binäärihaun käyttäminen - O(logn)-aika ja O(1)-avaruus
[Naiivi lähestymistapa] Lineaarihaun käyttäminen - O(n) aika ja O(1) avaruus
C++Yksinkertainen tapa on iteroida taulukkoa ja seurata sitä maksimi elementti on tapahtunut tähän mennessä. kun läpikulku on valmis, palauta maksimielementti.
// C++ program to find maximum element in bitonic // array using linear search #include #include using namespace std; int bitonicPoint(vector<int> &arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.size(); i++) res = max(res arr[i]); return res; } int main() { vector<int> arr = {8 10 100 400 500 3 2 1}; cout << bitonicPoint(arr); return 0; }
C // C program to find maximum element in bitonic // array using linear search #include int bitonicPoint(int arr[] int n) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < n; i++) res = (res > arr[i]) ? res : arr[i]; return res; } int main() { int arr[] = {8 10 100 400 500 3 2 1}; int n = sizeof(arr) / sizeof(arr[0]); printf('%dn' bitonicPoint(arr n)); return 0; }
Java // Java program to find maximum element in bitonic // array using linear search import java.util.Arrays; class GfG { static int bitonicPoint(int[] arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.length; i++) res = Math.max(res arr[i]); return res; } public static void main(String[] args) { int[] arr = {8 10 100 400 500 3 2 1}; System.out.println(bitonicPoint(arr)); } }
Python # Python program to find maximum element in # bitonic array using linear search def bitonicPoint(arr): res = arr[0] # Traverse the array to find # the maximum element for i in range(1 len(arr)): res = max(res arr[i]) return res if __name__ == '__main__': arr = [8 10 100 400 500 3 2 1] print(bitonicPoint(arr))
C# // C# program to find maximum element in bitonic // array using linear search using System; class GfG { static int bitonicPoint(int[] arr) { int res = arr[0]; // Traverse the array to find // the maximum element for (int i = 1; i < arr.Length; i++) res = Math.Max(res arr[i]); return res; } static void Main() { int[] arr = {8 10 100 400 500 3 2 1}; Console.WriteLine(bitonicPoint(arr)); } }
JavaScript // JavaScript program to find maximum element in // bitonic array using linear search function bitonicPoint(arr) { let res = arr[0]; // Traverse the array to find // the maximum element for (let i = 1; i < arr.length; i++) res = Math.max(res arr[i]); return res; } const arr = [8 10 100 400 500 3 2 1]; console.log(bitonicPoint(arr));
Lähtö
500
[Odotettu lähestymistapa] Binäärihaun käyttäminen - O(logn)-aika ja O(1)-avaruus
Syöttötaulukko seuraa a monotoninen kuvio . Jos elementti on pienempi kuin seuraava se sijaitsee i:ssä kasvava segmentti taulukosta ja maksimielementti on varmasti olemassa sen jälkeen. Päinvastoin, jos elementti on suurempi kuin seuraavassa se sijaitsee laskeva segmentti eli maksimi on joko tässä asennossa tai aikaisemmin. Siksi voimme käyttää binäärihaku löytääksesi tehokkaasti taulukon suurimman elementin.
// C++ program to find the maximum element in a bitonic // array using binary search. #include #include using namespace std; int bitonicPoint(vector<int> &arr) { int n = arr.size(); // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while(lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if(mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } int main() { vector<int> arr = {8 10 100 400 500 3 2 1}; cout << bitonicPoint(arr); return 0; }
C // C program to find the maximum element in a bitonic // array using binary search. #include int bitonicPoint(int arr[] int n) { // Search space for binary search. int lo = 0 hi = n - 1; int res = hi; while(lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if(mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } int main() { int arr[] = {8 10 100 400 500 3 2 1}; int n = sizeof(arr) / sizeof(arr[0]); printf('%dn' bitonicPoint(arr n)); return 0; }
Java // Java program to find the maximum element in a bitonic // array using binary search. import java.util.Arrays; class GfG { static int bitonicPoint(int[] arr) { int n = arr.length; // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } public static void main(String[] args) { int[] arr = {8 10 100 400 500 3 2 1}; System.out.println(bitonicPoint(arr)); } }
Python # Python program to find the maximum element in a bitonic # array using binary search. def bitonicPoint(arr): # Search space for binary search. lo = 0 hi = len(arr) - 1 res = hi while lo <= hi: mid = (lo + hi) // 2 # Decreasing segment if mid + 1 < len(arr) and arr[mid] > arr[mid + 1]: res = mid hi = mid - 1 # Increasing segment else: lo = mid + 1 return arr[res] if __name__ == '__main__': arr = [8 10 100 400 500 3 2 1] print(bitonicPoint(arr))
C# // C# program to find the maximum element in a bitonic // array using binary search. using System; class GfG { static int bitonicPoint(int[] arr) { int n = arr.Length; // Search space for binary search. int lo = 0 hi = n - 1; int res = n - 1; while (lo <= hi) { int mid = (lo + hi) / 2; // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } static void Main() { int[] arr = {8 10 100 400 500 3 2 1}; Console.WriteLine(bitonicPoint(arr)); } }
JavaScript // JavaScript program to find the maximum element in a bitonic // array using binary search. function bitonicPoint(arr) { const n = arr.length; // Search space for binary search. let lo = 0 hi = n - 1; let res = n - 1; while (lo <= hi) { let mid = Math.floor((lo + hi) / 2); // Decreasing segment if (mid + 1 < n && arr[mid] > arr[mid + 1]) { res = mid; hi = mid - 1; } // Increasing segment else { lo = mid + 1; } } return arr[res]; } const arr = [8 10 100 400 500 3 2 1]; console.log(bitonicPoint(arr));
Lähtö
500Luo tietokilpailu