logo

Etsi taulukon vähimmäissäätökustannukset

Kokeile sitä GfG Practicessa ' title= #practiceLinkDiv { näyttö: ei mitään !tärkeää; }

Annettu positiivisten kokonaislukujen joukko korvaa jokainen taulukon elementti siten, että taulukon vierekkäisten elementtien välinen ero on pienempi tai yhtä suuri kuin annettu kohde. Meidän on minimoitava säätökustannukset, jotka ovat uusien ja vanhojen arvojen erojen summa. Meidän on periaatteessa minimoitava ?|A[i] - Auusi[i]| missä 0? minä ? n-1 n on A[]:n ja A:n kokouusi[] on taulukko, jonka viereinen ero on pienempi tai yhtä suuri kuin kohde. Oletetaan, että taulukon kaikki elementit ovat pienempiä kuin vakio M = 100.

Esimerkkejä:  



    Input:    arr = [1 3 0 3] target = 1  
Output: Minimum adjustment cost is 3
Explanation: One of the possible solutions
is [2 3 2 3]
Input: arr = [2 3 2 3] target = 1
Output: Minimum adjustment cost is 0
Explanation: All adjacent elements in the input
array are already less than equal to given target
Input: arr = [55 77 52 61 39 6
25 60 49 47] target = 10
Output: Minimum adjustment cost is 75
Explanation: One of the possible solutions is
[55 62 52 49 39 29 30 40 49 47]
Recommended Practice Etsi taulukon vähimmäissäätökustannukset Kokeile sitä!

Oikaisukustannusten minimoimiseksi ?|A[i] - Auusi[i]| kaikille taulukon indekseille i |A[i] - Auusi[i]| pitäisi olla mahdollisimman lähellä nollaa. Myös |A[i] - Auusi[i+1] ]| ? Kohde.
Tämä ongelma voidaan ratkaista dynaaminen ohjelmointi .

Olkoon dp[i][j] määrittämään vähimmäissäätökustannukset, kun A[i] muutetaan j:ksi, niin DP-suhde määritellään - 

dp[i][j] = min{dp[i - 1][k]} + |j - A[i]|  
for all k's such that |k - j| ? target

Tässä 0? minä ? n ja 0? j ? M missä n on taulukon alkioiden lukumäärä ja M = 100. Kaikkia k on tarkasteltava sellaisina, että max(j - target 0) ? k ? min(M j + tavoite)
Lopuksi taulukon vähimmäissäätökustannus on min{dp[n - 1][j]} kaikille 0 ? j ? M.



Algoritmi:

  • Luo 2D-taulukko alustuksilla dp[n][M+1] tallentaaksesi vähiten säätökustannusten A[i]:n muuttamisesta j:ksi, missä n on taulukon pituus ja M on sen maksimiarvo.
  • Laske pienin säätökustannus, joka aiheutuu A[0]:n muuttamisesta j:ksi taulukon dp[0][j] ensimmäiselle elementille kaavalla dp[0][j] = abs (j - A[0]).
  • Korvaa A[i] j:llä muissa taulukon elementeissä dp[i][j] ja käytä kaavaa dp[i][j] = min(dp[i-1][k] + abs(A[i] - j)), jossa k ottaa kaikki mahdolliset arvot välillä max(j-target0) ja min(Mj+target) saadaksesi mahdollisimman pienet säätökustannukset.
  • Vähimmäiskorjauskustannukseksi anna pienin luku dp-taulukon viimeiseltä riviltä. 

Alla yllä olevan idean toteutus:

C++
// C++ program to find minimum adjustment cost of an array #include    using namespace std; #define M 100 // Function to find minimum adjustment cost of an array int minAdjustmentCost(int A[] int n int target) {  // dp[i][j] stores minimal adjustment cost on changing  // A[i] to j  int dp[n][M + 1];  // handle first element of array separately  for (int j = 0; j <= M; j++)  dp[0][j] = abs(j - A[0]);  // do for rest elements of the array  for (int i = 1; i < n; i++)  {  // replace A[i] to j and calculate minimal adjustment  // cost dp[i][j]  for (int j = 0; j <= M; j++)  {  // initialize minimal adjustment cost to INT_MAX  dp[i][j] = INT_MAX;  // consider all k such that k >= max(j - target 0) and  // k <= min(M j + target) and take minimum  for (int k = max(j-target0); k <= min(Mj+target); k++)  dp[i][j] = min(dp[i][j] dp[i - 1][k] + abs(A[i] - j));  }  }   // return minimum value from last row of dp table  int res = INT_MAX;   for (int j = 0; j <= M; j++)  res = min(res dp[n - 1][j]);  return res; } // Driver Program to test above functions int main() {  int arr[] = {55 77 52 61 39 6 25 60 49 47};  int n = sizeof(arr) / sizeof(arr[0]);  int target = 10;  cout << 'Minimum adjustment cost is '  << minAdjustmentCost(arr n target) << endl;  return 0; } 
Java
// Java program to find minimum adjustment cost of an array import java.io.*; import java.util.*; class GFG  {  public static int M = 100;    // Function to find minimum adjustment cost of an array  static int minAdjustmentCost(int A[] int n int target)  {  // dp[i][j] stores minimal adjustment cost on changing  // A[i] to j  int[][] dp = new int[n][M + 1];    // handle first element of array separately  for (int j = 0; j <= M; j++)  dp[0][j] = Math.abs(j - A[0]);    // do for rest elements of the array  for (int i = 1; i < n; i++)  {  // replace A[i] to j and calculate minimal adjustment  // cost dp[i][j]  for (int j = 0; j <= M; j++)  {  // initialize minimal adjustment cost to INT_MAX  dp[i][j] = Integer.MAX_VALUE;    // consider all k such that k >= max(j - target 0) and  // k <= min(M j + target) and take minimum  int k = Math.max(j-target0);  for ( ; k <= Math.min(Mj+target); k++)  dp[i][j] = Math.min(dp[i][j] dp[i - 1][k] +   Math.abs(A[i] - j));  }  }     // return minimum value from last row of dp table  int res = Integer.MAX_VALUE;   for (int j = 0; j <= M; j++)  res = Math.min(res dp[n - 1][j]);    return res;  }    // Driver program  public static void main (String[] args)   {  int arr[] = {55 77 52 61 39 6 25 60 49 47};  int n = arr.length;  int target = 10;    System.out.println('Minimum adjustment cost is '  +minAdjustmentCost(arr n target));  } } // This code is contributed by Pramod Kumar 
Python3
# Python3 program to find minimum # adjustment cost of an array  M = 100 # Function to find minimum # adjustment cost of an array def minAdjustmentCost(A n target): # dp[i][j] stores minimal adjustment  # cost on changing A[i] to j  dp = [[0 for i in range(M + 1)] for i in range(n)] # handle first element # of array separately for j in range(M + 1): dp[0][j] = abs(j - A[0]) # do for rest elements  # of the array  for i in range(1 n): # replace A[i] to j and  # calculate minimal adjustment # cost dp[i][j]  for j in range(M + 1): # initialize minimal adjustment # cost to INT_MAX dp[i][j] = 100000000 # consider all k such that # k >= max(j - target 0) and # k <= min(M j + target) and  # take minimum for k in range(max(j - target 0) min(M j + target) + 1): dp[i][j] = min(dp[i][j] dp[i - 1][k] + abs(A[i] - j)) # return minimum value from  # last row of dp table res = 10000000 for j in range(M + 1): res = min(res dp[n - 1][j]) return res # Driver Code  arr= [55 77 52 61 39 6 25 60 49 47] n = len(arr) target = 10 print('Minimum adjustment cost is' minAdjustmentCost(arr n target) sep = ' ') # This code is contributed  # by sahilshelangia 
C#
// C# program to find minimum adjustment // cost of an array using System; class GFG {    public static int M = 100;    // Function to find minimum adjustment  // cost of an array  static int minAdjustmentCost(int []A int n  int target)  {    // dp[i][j] stores minimal adjustment  // cost on changing A[i] to j  int[] dp = new int[nM + 1];  // handle first element of array  // separately  for (int j = 0; j <= M; j++)  dp[0j] = Math.Abs(j - A[0]);  // do for rest elements of the array  for (int i = 1; i < n; i++)  {  // replace A[i] to j and calculate  // minimal adjustment cost dp[i][j]  for (int j = 0; j <= M; j++)  {  // initialize minimal adjustment  // cost to INT_MAX  dp[ij] = int.MaxValue;  // consider all k such that   // k >= max(j - target 0) and  // k <= min(M j + target) and  // take minimum  int k = Math.Max(j - target 0);    for ( ; k <= Math.Min(M j +  target); k++)  dp[ij] = Math.Min(dp[ij]  dp[i - 1k]  + Math.Abs(A[i] - j));  }  }   // return minimum value from last  // row of dp table  int res = int.MaxValue;   for (int j = 0; j <= M; j++)  res = Math.Min(res dp[n - 1j]);  return res;  }    // Driver program  public static void Main ()   {  int []arr = {55 77 52 61 39  6 25 60 49 47};  int n = arr.Length;  int target = 10;  Console.WriteLine('Minimum adjustment'  + ' cost is '  + minAdjustmentCost(arr n target));  } } // This code is contributed by Sam007. 
JavaScript
<script>  // Javascript program to find minimum adjustment cost of an array  let M = 100;    // Function to find minimum adjustment cost of an array  function minAdjustmentCost(A n target)  {    // dp[i][j] stores minimal adjustment cost on changing  // A[i] to j  let dp = new Array(n);  for (let i = 0; i < n; i++)  {  dp[i] = new Array(n);  for (let j = 0; j <= M; j++)  {  dp[i][j] = 0;  }  }    // handle first element of array separately  for (let j = 0; j <= M; j++)  dp[0][j] = Math.abs(j - A[0]);    // do for rest elements of the array  for (let i = 1; i < n; i++)  {  // replace A[i] to j and calculate minimal adjustment  // cost dp[i][j]  for (let j = 0; j <= M; j++)  {  // initialize minimal adjustment cost to INT_MAX  dp[i][j] = Number.MAX_VALUE;    // consider all k such that k >= max(j - target 0) and  // k <= min(M j + target) and take minimum  let k = Math.max(j-target0);  for ( ; k <= Math.min(Mj+target); k++)  dp[i][j] = Math.min(dp[i][j] dp[i - 1][k] +   Math.abs(A[i] - j));  }  }     // return minimum value from last row of dp table  let res = Number.MAX_VALUE;   for (let j = 0; j <= M; j++)  res = Math.min(res dp[n - 1][j]);    return res;  }    let arr = [55 77 52 61 39 6 25 60 49 47];  let n = arr.length;  let target = 10;  document.write('Minimum adjustment cost is '  +minAdjustmentCost(arr n target));    // This code is contributed by decode2207. </script> 
PHP
 // PHP program to find minimum  // adjustment cost of an array $M = 100; // Function to find minimum  // adjustment cost of an array function minAdjustmentCost( $A $n $target) { // dp[i][j] stores minimal  // adjustment cost on changing // A[i] to j global $M; $dp = array(array()); // handle first element  // of array separately for($j = 0; $j <= $M; $j++) $dp[0][$j] = abs($j - $A[0]); // do for rest  // elements of the array for($i = 1; $i < $n; $i++) { // replace A[i] to j and  // calculate minimal adjustment // cost dp[i][j] for($j = 0; $j <= $M; $j++) { // initialize minimal adjustment // cost to INT_MAX $dp[$i][$j] = PHP_INT_MAX; // consider all k such that  // k >= max(j - target 0) and // k <= min(M j + target) and // take minimum for($k = max($j - $target 0); $k <= min($M $j + $target); $k++) $dp[$i][$j] = min($dp[$i][$j] $dp[$i - 1][$k] + abs($A[$i] - $j)); } } // return minimum value  // from last row of dp table $res = PHP_INT_MAX; for($j = 0; $j <= $M; $j++) $res = min($res $dp[$n - 1][$j]); return $res; } // Driver Code $arr = array(55 77 52 61 39 6 25 60 49 47); $n = count($arr); $target = 10; echo 'Minimum adjustment cost is '  minAdjustmentCost($arr $n $target); // This code is contributed by anuj_67. ?> 

Lähtö
Minimum adjustment cost is 75

Aika monimutkaisuus: O(n*m2)
Aputila: O(n *m)




Tehokas lähestymistapa: Tilan optimointi

Edellisessä lähestymistavassa nykyinen arvo dp[i][j] riippuu vain nykyisestä ja edellisen rivin arvoista DP . Joten tilan monimutkaisuuden optimoimiseksi käytämme yhtä 1D-taulukkoa laskelmien tallentamiseen.

Käyttöönoton vaiheet:

  • Luo 1D-vektori dp kooltaan m+1 .
  • Aseta perustapaus alustamalla arvot DP .
  • Iteroi nyt aliongelmia sisäkkäisen silmukan avulla ja hanki nykyinen arvo aiemmista laskelmista.
  • Luo nyt väliaikainen 1d-vektori prev_dp käytetään tallentamaan aiempien laskelmien nykyiset arvot.
  • Määritä jokaisen iteraation jälkeen arvo prev_dp dp:ksi lisätoistoa varten.
  • Alusta muuttuja res tallentaaksesi lopullisen vastauksen ja päivittääksesi sen iteroimalla Dp:n kautta.
  • Lopuksi palauta ja tulosta lopullinen tallennettu vastaus res .

Toteutus: 
 

C++
#include    using namespace std; #define M 100 // Function to find minimum adjustment cost of an array int minAdjustmentCost(int A[] int n int target) {  int dp[M + 1]; // Array to store the minimum adjustment costs for each value  for (int j = 0; j <= M; j++)  dp[j] = abs(j - A[0]); // Initialize the first row with the absolute differences  for (int i = 1; i < n; i++) // Iterate over the array elements  {  int prev_dp[M + 1];  memcpy(prev_dp dp sizeof(dp)); // Store the previous row's minimum costs  for (int j = 0; j <= M; j++) // Iterate over the possible values  {  dp[j] = INT_MAX; // Initialize the current value with maximum cost  // Find the minimum cost by considering the range of previous values  for (int k = max(j - target 0); k <= min(M j + target); k++)  dp[j] = min(dp[j] prev_dp[k] + abs(A[i] - j));  }  }  int res = INT_MAX;  for (int j = 0; j <= M; j++)  res = min(res dp[j]); // Find the minimum cost in the last row  return res; // Return the minimum adjustment cost } int main() {  int arr[] = {55 77 52 61 39 6 25 60 49 47};  int n = sizeof(arr) / sizeof(arr[0]);  int target = 10;  cout << 'Minimum adjustment cost is '  << minAdjustmentCost(arr n target) << endl;  return 0; } 
Java
import java.util.Arrays; public class MinimumAdjustmentCost {  static final int M = 100;  // Function to find the minimum adjustment cost of an array  static int minAdjustmentCost(int[] A int n int target) {  int[] dp = new int[M + 1];  // Initialize the first row with absolute differences  for (int j = 0; j <= M; j++) {  dp[j] = Math.abs(j - A[0]);  }  // Iterate over the array elements  for (int i = 1; i < n; i++) {  int[] prev_dp = Arrays.copyOf(dp dp.length); // Store the previous row's minimum costs  // Iterate over the possible values  for (int j = 0; j <= M; j++) {  dp[j] = Integer.MAX_VALUE; // Initialize the current value with maximum cost  // Find the minimum cost by considering the range of previous values  for (int k = Math.max(j - target 0); k <= Math.min(M j + target); k++) {  dp[j] = Math.min(dp[j] prev_dp[k] + Math.abs(A[i] - j));  }  }  }  int res = Integer.MAX_VALUE;  for (int j = 0; j <= M; j++) {  res = Math.min(res dp[j]); // Find the minimum cost in the last row  }  return res; // Return the minimum adjustment cost  }  public static void main(String[] args) {  int[] arr = { 55 77 52 61 39 6 25 60 49 47 };  int n = arr.length;  int target = 10;  System.out.println('Minimum adjustment cost is ' + minAdjustmentCost(arr n target));  } } 
Python3
def min_adjustment_cost(A n target): M = 100 dp = [0] * (M + 1) # Initialize the first row of dp with absolute differences for j in range(M + 1): dp[j] = abs(j - A[0]) # Iterate over the array elements for i in range(1 n): prev_dp = dp[:] # Store the previous row's minimum costs for j in range(M + 1): dp[j] = float('inf') # Initialize the current value with maximum cost # Find the minimum cost by considering the range of previous values for k in range(max(j - target 0) min(M j + target) + 1): dp[j] = min(dp[j] prev_dp[k] + abs(A[i] - j)) res = float('inf') for j in range(M + 1): res = min(res dp[j]) # Find the minimum cost in the last row return res if __name__ == '__main__': arr = [55 77 52 61 39 6 25 60 49 47] n = len(arr) target = 10 print('Minimum adjustment cost is' min_adjustment_cost(arr n target)) 
C#
using System; class Program {  const int M = 100;  // Function to find minimum adjustment cost of an array  static int MinAdjustmentCost(int[] A int n int target)  {  int[] dp = new int[M + 1]; // Array to store the minimum adjustment costs for each value  for (int j = 0; j <= M; j++)  {  dp[j] = Math.Abs(j - A[0]); // Initialize the first row with the absolute differences  }  for (int i = 1; i < n; i++) // Iterate over the array elements  {  int[] prevDp = (int[])dp.Clone(); // Store the previous row's minimum costs  for (int j = 0; j <= M; j++) // Iterate over the possible values  {  dp[j] = int.MaxValue; // Initialize the current value with maximum cost  // Find the minimum cost by considering the range of previous values  for (int k = Math.Max(j - target 0); k <= Math.Min(M j + target); k++)  {  dp[j] = Math.Min(dp[j] prevDp[k] + Math.Abs(A[i] - j));  }  }  }  int res = int.MaxValue;  for (int j = 0; j <= M; j++)  {  res = Math.Min(res dp[j]); // Find the minimum cost in the last row  }  return res; // Return the minimum adjustment cost  }  static void Main()  {  int[] arr = { 55 77 52 61 39 6 25 60 49 47 };  int n = arr.Length;  int target = 10;  Console.WriteLine('Minimum adjustment cost is ' + MinAdjustmentCost(arr n target));  } } 
JavaScript
const M = 100; // Function to find minimum adjustment cost of an array function minAdjustmentCost(A n target) {  let dp = new Array(M + 1); // Array to store the minimum adjustment costs for each value  for (let j = 0; j <= M; j++)  dp[j] = Math.abs(j - A[0]); // Initialize the first row with the absolute differences  for (let i = 1; i < n; i++) // Iterate over the array elements  {  let prev_dp = [...dp]; // Store the previous row's minimum costs  for (let j = 0; j <= M; j++) // Iterate over the possible values  {  dp[j] = Number.MAX_VALUE; // Initialize the current value with maximum cost  // Find the minimum cost by considering the range of previous values  for (let k = Math.max(j - target 0); k <= Math.min(M j + target); k++)  dp[j] = Math.min(dp[j] prev_dp[k] + Math.abs(A[i] - j));  }  }  let res = Number.MAX_VALUE;  for (let j = 0; j <= M; j++)  res = Math.min(res dp[j]); // Find the minimum cost in the last row  return res; // Return the minimum adjustment cost } let arr = [55 77 52 61 39 6 25 60 49 47]; let n = arr.length; let target = 10; console.log('Minimum adjustment cost is ' + minAdjustmentCost(arr n target)); // This code is contributed by Kanchan Agarwal 


Lähtö

Minimum adjustment cost is 75  

Aika monimutkaisuus: O(n*m2)
Aputila: O (m)