Kun N x N kokoinen neliö shakkilaudalla on annettu Ritarin sijainti ja kohteen sijainti, tehtävänä on selvittää minimivaiheet, jotka Ritari ottaa saavuttaakseen maalipaikan.

Esimerkkejä:
Input : (2 4) - knight's position (6 4) - target cell Output : 2 Input : (4 5) (1 1) Output : 3
BFS-lähestymistavasta yllä olevan ongelman ratkaisemiseksi on jo käsitelty edellinen lähettää. Tässä postauksessa käsitellään dynaamisen ohjelmoinnin ratkaisua.
Lähestymistavan selitys:
Anna shakkilaudalle 8 x 8 solua. Sanotaan nyt, että ritari on kohdassa (3 3) ja kohde on kohdassa (7 8). Ritarin nykyisestä paikasta on mahdollista tehdä 8 siirtoa eli (2 1) (1 2) (4 1) (1 4) (5 2) (2 5) (5 4) (4 5). Mutta näistä vain kaksi liikettä (5 4) ja (4 5) ovat kohti kohdetta ja kaikki muu poistuu kohteesta. Joten löytääksesi vähimmäisaskeleita mene joko (4 5) tai (5 4). Laske nyt vähimmäisaskeleita (4 5) ja (5 4) tavoitteen saavuttamiseksi. Tämä lasketaan dynaamisella ohjelmoinnilla. Siten tämä johtaa minimivaiheisiin (3 3) - (7 8).
Anna shakkilaudalle 8 x 8 solua. Oletetaan nyt, että ritari on kohdassa (4 3) ja kohde on kohdassa (4 7). Liikkeitä on 8, mutta kohti kohdetta on vain 4 liikettä eli (5 5) (3 5) (2 4) (6 4). Koska (5 5) vastaa (3 5) ja (2 4) vastaa (6 4). Joten näistä 4 pisteestä se voidaan muuntaa 2 pisteeksi. Otetaan (5 5) ja (6 4) (täällä). Laske nyt näiden kahden pisteen vähimmäisvaiheet tavoitteen saavuttamiseksi. Tämä lasketaan dynaamisella ohjelmoinnilla. Siten tämä johtaa minimivaiheisiin (4 3) - (4 7).
Poikkeus: Kun ritari on kulmassa ja kohde on sellainen, että x- ja y-koordinaattien ero ritaripaikan kanssa on (1 1) tai päinvastoin. Silloin vähimmäisaskeleita on 4.
Dynaaminen ohjelmointiyhtälö:
1) dp[diffOfX][diffOfY] on vähimmäisaskel ritarin asemasta kohteen sijaintiin.
2) dp[diffOfX][diffOfY] = dp[diffOfY][diffOfX] .
missä diffOfX = ero ritarin x-koordinaatin ja kohteen x-koordinaatin välillä
diffOfY = ero ratsun y-koordinaatin ja kohteen y-koordinaatin välillä
Alla on yllä olevan lähestymistavan toteutus:
// C++ code for minimum steps for // a knight to reach target position #include using namespace std; // initializing the matrix. int dp[8][8] = { 0 }; int getsteps(int x int y int tx int ty) { // if knight is on the target // position return 0. if (x == tx && y == ty) return dp[0][0]; else { // if already calculated then return // that value. Taking absolute difference. if (dp[abs(x - tx)][abs(y - ty)] != 0) return dp[abs(x - tx)][abs(y - ty)]; else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if (x <= tx) { if (y <= ty) { x1 = x + 2; y1 = y + 1; x2 = x + 1; y2 = y + 2; } else { x1 = x + 2; y1 = y - 1; x2 = x + 1; y2 = y - 2; } } else { if (y <= ty) { x1 = x - 2; y1 = y + 1; x2 = x - 1; y2 = y + 2; } else { x1 = x - 2; y1 = y - 1; x2 = x - 1; y2 = y - 2; } } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp[abs(x - tx)][abs(y - ty)] = min(getsteps(x1 y1 tx ty) getsteps(x2 y2 tx ty)) + 1; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp[abs(y - ty)][abs(x - tx)] = dp[abs(x - tx)][abs(y - ty)]; return dp[abs(x - tx)][abs(y - ty)]; } } } // Driver Code int main() { int i n x y tx ty ans; // size of chess board n*n n = 100; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4; y = 5; tx = 1; ty = 1; // (Exception) these are the four corner points // for which the minimum steps is 4. if ((x == 1 && y == 1 && tx == 2 && ty == 2) || (x == 2 && y == 2 && tx == 1 && ty == 1)) ans = 4; else if ((x == 1 && y == n && tx == 2 && ty == n - 1) || (x == 2 && y == n - 1 && tx == 1 && ty == n)) ans = 4; else if ((x == n && y == 1 && tx == n - 1 && ty == 2) || (x == n - 1 && y == 2 && tx == n && ty == 1)) ans = 4; else if ((x == n && y == n && tx == n - 1 && ty == n - 1) || (x == n - 1 && y == n - 1 && tx == n && ty == n)) ans = 4; else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp[1][0] = 3; dp[0][1] = 3; dp[1][1] = 2; dp[2][0] = 2; dp[0][2] = 2; dp[2][1] = 1; dp[1][2] = 1; ans = getsteps(x y tx ty); } cout << ans << endl; return 0; }
Java //Java code for minimum steps for // a knight to reach target position public class GFG { // initializing the matrix. static int dp[][] = new int[8][8]; static int getsteps(int x int y int tx int ty) { // if knight is on the target // position return 0. if (x == tx && y == ty) { return dp[0][0]; } else // if already calculated then return // that value. Taking absolute difference. if (dp[ Math.abs(x - tx)][ Math.abs(y - ty)] != 0) { return dp[ Math.abs(x - tx)][ Math.abs(y - ty)]; } else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if (x <= tx) { if (y <= ty) { x1 = x + 2; y1 = y + 1; x2 = x + 1; y2 = y + 2; } else { x1 = x + 2; y1 = y - 1; x2 = x + 1; y2 = y - 2; } } else if (y <= ty) { x1 = x - 2; y1 = y + 1; x2 = x - 1; y2 = y + 2; } else { x1 = x - 2; y1 = y - 1; x2 = x - 1; y2 = y - 2; } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp[ Math.abs(x - tx)][ Math.abs(y - ty)] = Math.min(getsteps(x1 y1 tx ty) getsteps(x2 y2 tx ty)) + 1; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp[ Math.abs(y - ty)][ Math.abs(x - tx)] = dp[ Math.abs(x - tx)][ Math.abs(y - ty)]; return dp[ Math.abs(x - tx)][ Math.abs(y - ty)]; } } // Driver Code static public void main(String[] args) { int i n x y tx ty ans; // size of chess board n*n n = 100; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4; y = 5; tx = 1; ty = 1; // (Exception) these are the four corner points // for which the minimum steps is 4. if ((x == 1 && y == 1 && tx == 2 && ty == 2) || (x == 2 && y == 2 && tx == 1 && ty == 1)) { ans = 4; } else if ((x == 1 && y == n && tx == 2 && ty == n - 1) || (x == 2 && y == n - 1 && tx == 1 && ty == n)) { ans = 4; } else if ((x == n && y == 1 && tx == n - 1 && ty == 2) || (x == n - 1 && y == 2 && tx == n && ty == 1)) { ans = 4; } else if ((x == n && y == n && tx == n - 1 && ty == n - 1) || (x == n - 1 && y == n - 1 && tx == n && ty == n)) { ans = 4; } else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp[1][0] = 3; dp[0][1] = 3; dp[1][1] = 2; dp[2][0] = 2; dp[0][2] = 2; dp[2][1] = 1; dp[1][2] = 1; ans = getsteps(x y tx ty); } System.out.println(ans); } } /*This code is contributed by PrinciRaj1992*/
Python3 # Python3 code for minimum steps for # a knight to reach target position # initializing the matrix. dp = [[0 for i in range(8)] for j in range(8)]; def getsteps(x y tx ty): # if knight is on the target # position return 0. if (x == tx and y == ty): return dp[0][0]; # if already calculated then return # that value. Taking absolute difference. elif(dp[abs(x - tx)][abs(y - ty)] != 0): return dp[abs(x - tx)][abs(y - ty)]; else: # there will be two distinct positions # from the knight towards a target. # if the target is in same row or column # as of knight then there can be four # positions towards the target but in that # two would be the same and the other two # would be the same. x1 y1 x2 y2 = 0 0 0 0; # (x1 y1) and (x2 y2) are two positions. # these can be different according to situation. # From position of knight the chess board can be # divided into four blocks i.e.. N-E E-S S-W W-N . if (x <= tx): if (y <= ty): x1 = x + 2; y1 = y + 1; x2 = x + 1; y2 = y + 2; else: x1 = x + 2; y1 = y - 1; x2 = x + 1; y2 = y - 2; elif (y <= ty): x1 = x - 2; y1 = y + 1; x2 = x - 1; y2 = y + 2; else: x1 = x - 2; y1 = y - 1; x2 = x - 1; y2 = y - 2; # ans will be 1 + minimum of steps # required from (x1 y1) and (x2 y2). dp[abs(x - tx)][abs(y - ty)] = min(getsteps(x1 y1 tx ty) getsteps(x2 y2 tx ty)) + 1; # exchanging the coordinates x with y of both # knight and target will result in same ans. dp[abs(y - ty)][abs(x - tx)] = dp[abs(x - tx)][abs(y - ty)]; return dp[abs(x - tx)][abs(y - ty)]; # Driver Code if __name__ == '__main__': # size of chess board n*n n = 100; # (x y) coordinate of the knight. # (tx ty) coordinate of the target position. x = 4; y = 5; tx = 1; ty = 1; # (Exception) these are the four corner points # for which the minimum steps is 4. if ((x == 1 and y == 1 and tx == 2 and ty == 2) or (x == 2 and y == 2 and tx == 1 and ty == 1)): ans = 4; elif ((x == 1 and y == n and tx == 2 and ty == n - 1) or (x == 2 and y == n - 1 and tx == 1 and ty == n)): ans = 4; elif ((x == n and y == 1 and tx == n - 1 and ty == 2) or (x == n - 1 and y == 2 and tx == n and ty == 1)): ans = 4; elif ((x == n and y == n and tx == n - 1 and ty == n - 1) or (x == n - 1 and y == n - 1 and tx == n and ty == n)): ans = 4; else: # dp[a][b] here a b is the difference of # x & tx and y & ty respectively. dp[1][0] = 3; dp[0][1] = 3; dp[1][1] = 2; dp[2][0] = 2; dp[0][2] = 2; dp[2][1] = 1; dp[1][2] = 1; ans = getsteps(x y tx ty); print(ans); # This code is contributed by PrinciRaj1992
C# // C# code for minimum steps for // a knight to reach target position using System; public class GFG{ // initializing the matrix. static int [ ]dp = new int[8 8]; static int getsteps(int x int y int tx int ty) { // if knight is on the target // position return 0. if (x == tx && y == ty) { return dp[0 0]; } else // if already calculated then return // that value. Taking Absolute difference. if (dp[ Math. Abs(x - tx) Math. Abs(y - ty)] != 0) { return dp[ Math. Abs(x - tx) Math. Abs(y - ty)]; } else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. int x1 y1 x2 y2; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if (x <= tx) { if (y <= ty) { x1 = x + 2; y1 = y + 1; x2 = x + 1; y2 = y + 2; } else { x1 = x + 2; y1 = y - 1; x2 = x + 1; y2 = y - 2; } } else if (y <= ty) { x1 = x - 2; y1 = y + 1; x2 = x - 1; y2 = y + 2; } else { x1 = x - 2; y1 = y - 1; x2 = x - 1; y2 = y - 2; } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp[ Math. Abs(x - tx) Math. Abs(y - ty)] = Math.Min(getsteps(x1 y1 tx ty) getsteps(x2 y2 tx ty)) + 1; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp[ Math. Abs(y - ty) Math. Abs(x - tx)] = dp[ Math. Abs(x - tx) Math. Abs(y - ty)]; return dp[ Math. Abs(x - tx) Math. Abs(y - ty)]; } } // Driver Code static public void Main() { int i n x y tx ty ans; // size of chess board n*n n = 100; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4; y = 5; tx = 1; ty = 1; // (Exception) these are the four corner points // for which the minimum steps is 4. if ((x == 1 && y == 1 && tx == 2 && ty == 2) || (x == 2 && y == 2 && tx == 1 && ty == 1)) { ans = 4; } else if ((x == 1 && y == n && tx == 2 && ty == n - 1) || (x == 2 && y == n - 1 && tx == 1 && ty == n)) { ans = 4; } else if ((x == n && y == 1 && tx == n - 1 && ty == 2) || (x == n - 1 && y == 2 && tx == n && ty == 1)) { ans = 4; } else if ((x == n && y == n && tx == n - 1 && ty == n - 1) || (x == n - 1 && y == n - 1 && tx == n && ty == n)) { ans = 4; } else { // dp[a b] here a b is the difference of // x & tx and y & ty respectively. dp[1 0] = 3; dp[0 1] = 3; dp[1 1] = 2; dp[2 0] = 2; dp[0 2] = 2; dp[2 1] = 1; dp[1 2] = 1; ans = getsteps(x y tx ty); } Console.WriteLine(ans); } } /*This code is contributed by PrinciRaj1992*/
JavaScript <script> // JavaScript code for minimum steps for // a knight to reach target position // initializing the matrix. let dp = new Array(8) for(let i=0;i<8;i++){ dp[i] = new Array(8).fill(0) } function getsteps(xytxty) { // if knight is on the target // position return 0. if (x == tx && y == ty) return dp[0][0]; else { // if already calculated then return // that value. Taking absolute difference. if (dp[(Math.abs(x - tx))][(Math.abs(y - ty))] != 0) return dp[(Math.abs(x - tx))][(Math.abs(y - ty))]; else { // there will be two distinct positions // from the knight towards a target. // if the target is in same row or column // as of knight then there can be four // positions towards the target but in that // two would be the same and the other two // would be the same. let x1 y1 x2 y2; // (x1 y1) and (x2 y2) are two positions. // these can be different according to situation. // From position of knight the chess board can be // divided into four blocks i.e.. N-E E-S S-W W-N . if (x <= tx) { if (y <= ty) { x1 = x + 2; y1 = y + 1; x2 = x + 1; y2 = y + 2; } else { x1 = x + 2; y1 = y - 1; x2 = x + 1; y2 = y - 2; } } else { if (y <= ty) { x1 = x - 2; y1 = y + 1; x2 = x - 1; y2 = y + 2; } else { x1 = x - 2; y1 = y - 1; x2 = x - 1; y2 = y - 2; } } // ans will be 1 + minimum of steps // required from (x1 y1) and (x2 y2). dp[(Math.abs(x - tx))][(Math.abs(y - ty))] = Math.min(getsteps(x1 y1 tx ty) getsteps(x2 y2 tx ty)) + 1; // exchanging the coordinates x with y of both // knight and target will result in same ans. dp[(Math.abs(y - ty))][(Math.abs(x - tx))] = dp[(Math.abs(x - tx))][(Math.abs(y - ty))]; return dp[(Math.abs(x - tx))][(Math.abs(y - ty))]; } } } // Driver Code let i n x y tx ty ans; // size of chess board n*n n = 100; // (x y) coordinate of the knight. // (tx ty) coordinate of the target position. x = 4; y = 5; tx = 1; ty = 1; // (Exception) these are the four corner points // for which the minimum steps is 4. if ((x == 1 && y == 1 && tx == 2 && ty == 2) || (x == 2 && y == 2 && tx == 1 && ty == 1)) ans = 4; else if ((x == 1 && y == n && tx == 2 && ty == n - 1) || (x == 2 && y == n - 1 && tx == 1 && ty == n)) ans = 4; else if ((x == n && y == 1 && tx == n - 1 && ty == 2) || (x == n - 1 && y == 2 && tx == n && ty == 1)) ans = 4; else if ((x == n && y == n && tx == n - 1 && ty == n - 1) || (x == n - 1 && y == n - 1 && tx == n && ty == n)) ans = 4; else { // dp[a][b] here a b is the difference of // x & tx and y & ty respectively. dp[1][0] = 3; dp[0][1] = 3; dp[1][1] = 2; dp[2][0] = 2; dp[0][2] = 2; dp[2][1] = 1; dp[1][2] = 1; ans = getsteps(x y tx ty); } document.write(ans''); // This code is contributed by shinjanpatra. </script>
Lähtö:
3
Aika monimutkaisuus: O(N * M) missä N on rivien kokonaismäärä ja M on sarakkeiden kokonaismäärä
Aputila: O (N * M)