Tässä artikkelissa tutkimme NumPy `ndarray.flatten()` -funktion syntaksia, määritelmää ja käyttöä. Annamme kattavan selityksen sekä havainnollistavan esimerkin ymmärtämisen parantamiseksi.
numpy.ndarray.flatten()> Funktion syntaksi
numpy.ndarray.flatten()> funktio palauttaa kopion taulukosta kutistettuna yhteen ulottuvuuteen.
Syntaksi : numpy.order.flatten(order='C')
Parametrit:
- Tilaus : [{'C', 'F', 'A', 'K'}, valinnainen] 'C' tarkoittaa tasoittamista rivin pääjärjestykseen (C-tyyli). 'F' tarkoittaa litistämistä sarake-duuri (Fortran-tyyli) järjestyksessä. 'A' tarkoittaa litistämistä sarake-pääjärjestykseen, jos a on Fortranin vierekkäinen muistissa, muutoin rivi-pääjärjestys. 'K' tarkoittaa a:n tasoittamista siinä järjestyksessä, jossa elementit esiintyvät muistissa. Oletus on 'C'.
Paluu: [ndarray] Kopio syöttötaulukosta, litistettynä yhteen ulottuvuuteen.
What is numpy.ndarray.flatten()> Toimiiko Pythonissa?
Thenumpy.ndarray.flatten()>toimi sisään Python on menetelmä, jonka tarjoaa NumPy kirjasto, jota käytetään laajalti numeerisiin ja taulukkotoimintoihin. Tämä toiminto on suunniteltu erityisesti NumPy-taulukoille (ndarrays) ja sen tarkoituksena on palauttaa litistetty kopio syöttötaulukosta. Termi litteä tarkoittaa, että tuloksena oleva taulukko on alkuperäisen yksiulotteinen esitys, joka purkaa kaikki sisäkkäiset mitat.
numpy.ndarray.flatten()> Esimerkkejä toiminnoista
Siitä on erilaisia esimerkkejä numpy.ndarray.flatten()> funktio, tässä keskustelemme joistakin yleisesti käytetyistä esimerkeistä numpy.ndarray.flatten()> Seuraavat toiminnot.
- Numpy litistystoiminto
- numpy.ndarray.flatten() Fortran Orderissa
- Liitä litistetyt taulukot
- Alusta litteä taulukko nollalla
- Etsi maksimiarvo littetystä taulukosta
Numpy litistystoiminto
Tässä esimerkissä koodi käyttää numpy-kirjastoa 2D-taulukon 'arr' luomiseen. Flatten()-funktiota sovelletaan sitten funktioon 'arr', mikä muuntaa sen 1D-taulukoksi 'gfg', joka tulostetaan. Tuloksena on litistetty versio alkuperäisestä 2D-taulukosta.
Python 3
# importing numpy as geek> import> numpy as geek> arr>=> geek.array([[>5>,>6>], [>7>,>8>]])> gfg>=> arr.flatten()> print>( gfg )> |
>
>
Lähtö:
[5 6 7 8]>
numpy.ndarray.flatten() Fortran Orderissa
Tässä esimerkissä Tämä koodi käyttää NumPy-kirjastoa luomaan 2 × 2 -taulukon 'arr'. 'Fatten('F')' -toimintoa käytetään sitten tasoittamaan taulukko sarakepääjärjestyksessä ('F'), ja tulos tulostetaan.
Python 3
# importing numpy as geek> import> numpy as geek> arr>=> geek.array([[>5>,>6>], [>7>,>8>]])> gfg>=> arr.flatten(>'F'>)> print>( gfg )> |
>
css läpinäkyvyyden siirtyminen
>
Lähtö:
[5 6 7 8]>
Liitä litistetyt taulukot
Tässä esimerkissä koodi käyttää NumPy-komentoa kahden 2D-taulukon luomiseen, 'taulukko1' ja 'taulukko2'. Sitten se tasoittaa molemmat taulukot ja ketjuttaa ne yhdeksi 1D-taulukoksi nimeltä 'concatenated_array'. Lopuksi se tulostaa alkuperäiset taulukot ja ketjutetun tuloksen.
Python 3
import> numpy as np> # Create two 2D arrays> array1>=> np.array([[>1>,>2>,>3>], [>4>,>5>,>6>]])> array2>=> np.array([[>7>,>8>,>9>], [>10>,>11>,>12>]])> # Flatten the arrays and concatenate them> concatenated_array>=> np.concatenate((array1.flatten(), array2.flatten()))> print>(>'Array 1:'>)> print>(array1)> print>(>'
Array 2:'>)> print>(array2)> print>(>'
Concatenated Array:'>)> print>(concatenated_array)> |
java listalaatikko
>
>
Lähtö:
Array 1: [[1 2 3] [4 5 6]] Array 2: [[ 7 8 9] [10 11 12]] Concatenated Array: [ 1 2 3 4 5 6 7 8 9 10 11 12]>
Alusta litteä taulukko nollalla
Tässä esimerkissä koodi käyttää NumPy-kirjastoa luodakseen 2D-taulukon nimeltä 'alkuperäinen_taulukko'. Sitten se tasoittaa tämän taulukon ja luo uuden litteän taulukon nimeltä 'littetyt_nollat', jolla on sama muoto ja alustetaan nollia. Lopuksi se tulostaa sekä alkuperäisen 2D-taulukon että litteän taulukon, joka on täytetty nolilla.
Python 3
import> numpy as np> # Create a 2D array> original_array>=> np.array([[>1>,>2>,>3>],> >[>4>,>5>,>6>]])> # Flatten the array and initialize a new flattened array with zeros> flattened_zeros>=> np.zeros_like(original_array.flatten())> print>(>'Original Array:'>)> print>(original_array)> print>(>'
Flattened Zeros Array:'>)> print>(flattened_zeros)> |
>
>
Lähtö:
Original Array: [[1 2 3] [4 5 6]] Flattened Zeros Array: [0 0 0 0 0 0]>
Etsi maksimiarvo littetystä taulukosta
Tässä esimerkissä koodi käyttää NumPyä 3 × 3 -taulukon luomiseen, jonka nimi on 'alkuperäinen_taulukko'. Sitten se tasoittaa taulukon, löytää maksimiarvon litistetystä versiosta ja tulostaa alkuperäisen taulukon yhdessä enimmäisarvon kanssa.
Python 3
import> numpy as np> # Create a 3x3 array> original_array>=> np.array([[>4>,>12>,>8>],> >[>5>,>9>,>10>],> >[>7>,>6>,>11>]])> # Flatten the array and find the maximum value> max_value>=> original_array.flatten().>max>()> print>(>'Original Array:'>)> print>(original_array)> print>(>'
Maximum Value in Flattened Array:'>, max_value)> |
>
>
Lähtö:
Original Array: [[ 4 12 8] [ 5 9 10] [ 7 6 11]] Maximum Value in Flattened Array : 12>