Sisään tietokoneohjelmointi , operaattori on symboli, joka edustaa toimintaa. Operaattori on symboli, joka käskee kääntäjää suorittamaan tietyn looginen tai matemaattinen manipulaatioita. R-ohjelmointi on erittäin runsaasti sisäänrakennettuja operaattoreita.
Sisään R ohjelmointi , operaattorityyppejä on erilaisia, ja jokainen operaattori suorittaa eri tehtävän. Tietojen käsittelyyn on olemassa myös joitain ennakkooperaattoreita, kuten mallikaava ja lista-indeksointi.
R:ssä käytetään seuraavan tyyppisiä operaattoreita:
- Aritmeettiset operaattorit
- Relaatiooperaattorit
- Loogiset operaattorit
- Tehtäväoperaattorit
- Sekalaiset operaattorit
Aritmeettiset operaattorit
Aritmeettiset operaattorit ovat symboleja, joita käytetään edustamaan aritmeettisia matemaattisia operaatioita. Operaattorit vaikuttavat vektorin jokaiseen elementtiin. On olemassa useita aritmeettisia operaattoreita, joita R tukee.
Kyllä ei | Operaattori | Kuvaus | Esimerkki |
---|---|---|---|
1. | + | Tätä operaattoria käytetään kahden vektorin lisäämiseen R. a.:ssa<- c(2, 3.3, 4)< td> | b <- c(11, 5, 3) print(a+b) < pre> <strong>It will give us the following output:</strong> <pre> [1] 13.0 8.3 5.0 </pre></->-> | ->
2. | - | Tätä operaattoria käytetään vektorin jakamiseen toisesta. a<- c(2, 3.3, 4)< td> | b <- c(11, 5, 3) print(a-b) < pre> <strong>It will give us the following output:</strong> <pre> [1] -9.0 -1.7 3.0 </pre></->-> | ->
3. | * | Tätä operaattoria käytetään kertomaan kaksi vektoria keskenään. a<- c(2, 3.3, 4)< td> | b <- c(11, 5, 3) print(a*b) < pre> <strong>It will give us the following output:</strong> <pre> [1] 22.0 16.5 4.0 </pre></->-> | ->
4. | / | Tämä operaattori jakaa vektorin toisesta. a<- c(2, 3.3, 4)< td> | b <- c(11, 5, 3) print(a b)< pre> <strong>It will give us the following output:</strong> <pre> [1] 0.1818182 0.6600000 4.0000000 </pre></->-> | ->
5. | %% | Tätä operaattoria käytetään ensimmäisen vektorin loppuosan etsimiseen toisella vektorilla. a<- c(2, 3.3, 4)< td> | b <- c(11, 5, 3) print(a%%b) < pre> <strong>It will give us the following output:</strong> <pre> [1] 2.0 3.3 0 </pre></->-> | ->
6. | %/% | Tätä operaattoria käytetään etsimään ensimmäisen vektorin jako toisella(osamäärällä). | a <- c(2, 3.3, 4) b <- c(11, 5, 3) print(a% %b) < pre> <strong>It will give us the following output:</strong> <pre> [1] 0 0 4 </pre></->-> |
7. | ^ | Tämä operaattori nosti ensimmäisen vektorin toisen vektorin eksponenttiin. a<- c(2, 3.3, 4)< td> | b <- c(11, 5, 3) print(a^b) < pre> <strong>It will give us the following output:</strong> <pre> [1] 0248.0000 391.3539 4.0000 </pre></->-> | ->
Relaatiooperaattorit
Relaatiooperaattori on symboli, joka määrittelee jonkinlaisen suhteen kahden entiteetin välillä. Näitä ovat numeeriset yhtäläisyydet ja epätasa-arvot. Relaatiooperaattori vertaa ensimmäisen vektorin kutakin elementtiä toisen vektorin vastaavaan elementtiin. Vertailun tulos on Boolen arvo. On olemassa seuraavat relaatiooperaattorit, joita R tukee:
Kyllä ei | Operaattori | Kuvaus | Esimerkki |
---|---|---|---|
1. | > | Tämä operaattori palauttaa TRUE, kun jokainen elementti ensimmäisessä vektorissa on suurempi kuin vastaava elementti toisessa vektorissa. | a <- c(1, 3, 5) b b) < pre> <strong>It will give us the following output:</strong> <pre> [1] FALSE FALSE FALSE </pre></->-> |
2. | < | Tämä operaattori palauttaa TRUE, kun jokainen ensimmäisen vektorin elementti on pienempi kuin toisen vektorin vastaava elementti. | a <- c(1, 9, 5) b <- c(2, 4, 6) print(a <b) < pre> <strong>It will give us the following output:</strong> <pre> [1] FALSE TRUE FALSE </pre></->-> |
3. | <=< td> | Tämä operaattori palauttaa TOSI, kun jokainen ensimmäisen vektorin elementti on pienempi tai yhtä suuri kuin toisen vektorin vastaava elementti. | a <- c(1, 3, 5) b <- c(2, 6) print(a<="b)" < pre> <strong>It will give us the following output:</strong> <pre> [1] TRUE TRUE TRUE </pre></->-> | =<>
4. | >= | Tämä operaattori palauttaa TOSI, kun jokainen ensimmäisen vektorin elementti on suurempi tai yhtä suuri kuin toisen vektorin vastaava elementti. | a <- c(1, 3, 5) b="b)" < pre> <strong>It will give us the following output:</strong> <pre> [1] FALSE TRUE FALSE </pre></->-> |
5. | == | Tämä operaattori palauttaa TRUE, kun jokainen elementti ensimmäisessä vektorissa on yhtä suuri kuin vastaava toisen vektorin elementti. | a <- c(1, 3, 5) b <- c(2, 6) print(a="=b)" < pre> <strong>It will give us the following output:</strong> <pre>[1] FALSE TRUE FALSE </pre></->-> |
6. | != | Tämä operaattori palauttaa TOSI, kun jokainen ensimmäisen vektorin elementti ei ole sama kuin toisen vektorin vastaava elementti. | a <- c(1, 3, 5) b="b)" < pre> <strong>It will give us the following output:</strong> <pre> [1] TRUE FALSE TRUE </pre></->-> |
Loogiset operaattorit
Loogiset operaattorit antavat ohjelman tehdä päätöksen useiden ehtojen perusteella. Ohjelmassa jokaista operandia pidetään ehtona, joka voidaan arvioida vääräksi tai oikeaksi arvoksi. Ehtojen arvoa käytetään op1:n kokonaisarvon määrittämiseen operaattori op2. Loogisia operaattoreita voidaan soveltaa niihin vektoreihin, joiden tyyppi on looginen, numeerinen tai kompleksinen.
Looginen operaattori vertaa kutakin ensimmäisen vektorin elementtiä toisen vektorin vastaavaan elementtiin.
On olemassa seuraavan tyyppisiä operaattoreita, joita R tukee:Kyllä ei | Operaattori | Kuvaus | Esimerkki |
---|---|---|---|
1. | & | Tämä operaattori tunnetaan nimellä Looginen JA-operaattori. Tämä operaattori ottaa kummankin vektorin ensimmäisen elementin ja palauttaa TOSI, jos molemmat elementit ovat TOSI. | a <- c(3, 0, true, 2+2i) b <- c(2, 4, 2+3i) print(a&b) < pre> <strong>It will give us the following output:</strong> <pre> [1] TRUE FALSE TRUE TRUE </pre></->-> |
2. | | | Tätä operaattoria kutsutaan Looginen TAI -operaattori. Tämä operaattori ottaa kummankin vektorin ensimmäisen elementin ja palauttaa TOSI, jos toinen niistä on TOSI. | a <- c(3, 0, true, 2+2i) b <- c(2, 4, 2+3i) print(a|b) < pre> <strong>It will give us the following output:</strong> <pre> [1] TRUE TRUE TRUE TRUE </pre></->-> |
3. | ! | Tämä operaattori tunnetaan nimellä Looginen EI -operaattori. Tämä operaattori ottaa vektorin ensimmäisen elementin ja antaa tuloksena päinvastaisen loogisen arvon. | a <- c(3, 0, true, 2+2i) print(!a) < pre> <strong>It will give us the following output:</strong> <pre> [1] FALSE TRUE FALSE FALSE </pre></->-> |
4. | && | Tämä operaattori ottaa kummankin vektorin ensimmäisen elementin ja antaa tuloksena TOSI, vain jos molemmat ovat TOSI. | a <- c(3, 0, true, 2+2i) b <- c(2, 4, 2+3i) print(a&&b) < pre> <strong>It will give us the following output:</strong> <pre> [1] TRUE </pre></->-> |
5. | || | Tämä operaattori ottaa kummankin vektorin ensimmäisen alkion ja antaa tuloksen TOSI, jos toinen niistä on tosi. | a <- c(3, 0, true, 2+2i) b <- c(2, 4, 2+3i) print(a||b) < pre> <strong>It will give us the following output:</strong> <pre> [1] TRUE </pre></->-> |
Tehtäväoperaattorit
Määritysoperaattoria käytetään uuden arvon määrittämiseen muuttujalle. R:ssä näitä operaattoreita käytetään arvojen osoittamiseen vektoreille. Tehtävätyyppejä on seuraavat
Kyllä ei | Operaattori | Kuvaus | Esimerkki |
---|---|---|---|
1. | <- or='or' <<-< td> | Nämä operaattorit tunnetaan vasemmanpuoleisina osoitusoperaattoreina. | a <- c(3, 0, true, 2+2i) b <<- c(2, 4, 2+3i) d="c(1," 2, print(a) print(b) print(d) < pre> <strong>It will give us the following output:</strong> <pre> [1] 3+0i 0+0i 1+0i 2+2i [1] 2+0i 4+0i 1+0i 2+3i [1] 1+0i 2+0i 1+0i 2+3i </pre></->-> | ->
2. | -> tai ->> | Nämä operaattorit tunnetaan oikean osoituksen operaattoreina. | c(3, 0, TRUE, 2+2i) -> a c(2, 4, TRUE, 2+3i) ->> b print(a) print(b)Se antaa meille seuraavan tulosteen: [1] 3+0i 0+0i 1+0i 2+2i [1] 2+0i 4+0i 1+0i 2+3i |
R:n tukemat operaattorit:
Sekalaiset operaattorit
Erilaisia operaattoreita käytetään erityiseen tarkoitukseen. Näitä operaattoreita ei käytetä yleiseen matemaattiseen tai loogiseen laskemiseen. R:ssä tuetaan seuraavia sekalaisia operaattoreita
Kyllä ei | Operaattori | Kuvaus | Esimerkki |
---|---|---|---|
1. | : | Kaksoispisteoperaattoria käytetään numerosarjan luomiseen peräkkäin vektorille. | v <- 1:8 print(v) < pre> <strong>It will give us the following output:</strong> <pre> [1] 1 2 3 4 5 6 7 8 </pre></->-> |
2. | %sisään% | Tätä käytetään, kun haluamme tunnistaa, kuuluuko elementti vektoriin. | a1 <- 8 12 a2 <- d 1:10 print(a1%in%t) print(a2%in%t) < pre> <strong>It will give us the following output:</strong> <pre> [1] FALSE [1] FALSE </pre></->-> |
3. | %*% | Sitä käytetään matriisin kertomiseen sen transponoinnilla. | M=matrix(c(1,2,3,4,5,6), nrow=2, ncol=3, byrow=TRUE) T=m%*%T(m) print(T)Se antaa meille seuraavan tulosteen: 14 32 32 77 |