Fibonacci-luvut ovat numeroita seuraavassa kokonaislukujonossa. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, …….. Matemaattisesti Fibonacci-lukujen sekvenssi Fn määritellään toistuvuusrelaatiolla.
F n = Fn-1+ Fn-2
siemenarvoilla: F 0 = 0 ja F 1 = 1.
Fibonacci-luvut alkuperäistä lähestymistapaa käyttäen
Fibonacci-sarja käyttäen a Python, kun silmukka toteutetaan.
Python 3
n>=> 10> num1>=> 0> num2>=> 1> next_number>=> num2> count>=> 1> while> count <>=> n:> >print>(next_number, end>=>' '>)> >count>+>=> 1> >num1, num2>=> num2, next_number> >next_number>=> num1>+> num2> print>()> |
nuhjuinen piste
>
>
Lähtö
1 2 3 5 8 13 21 34 55 89>
Python-ohjelma Fibonacci-luvuille rekursiolla
Python Toiminto n:nnen Fibonacci-luvun löytämiseksi käyttämällä Python-rekursio .
Python 3
def> Fibonacci(n):> ># Check if input is 0 then it will> ># print incorrect input> >if> n <>0>:> >print>(>'Incorrect input'>)> ># Check if n is 0> ># then it will return 0> >elif> n>=>=> 0>:> >return> 0> ># Check if n is 1,2> ># it will return 1> >elif> n>=>=> 1> or> n>=>=> 2>:> >return> 1> >else>:> >return> Fibonacci(n>->1>)>+> Fibonacci(n>->2>)> # Driver Program> print>(Fibonacci(>9>))> |
>
>Lähtö
34>
Aika monimutkaisuus: O(2 ^ n) Eksponentiaalinen
Aputila: Päällä)
Fibonacci-sekvenssi DP:llä (dynaaminen ohjelmointi)
Pythonin dynaaminen ohjelmointi ottaa kahdeksi ensimmäiseksi Fibonacci-luvun 0 ja 1.
Python 3
mikä on kirjainkoko sql:ssä
fmovies
# Function for nth fibonacci> # number> FibArray>=> [>0>,>1>]> def> fibonacci(n):> > ># Check is n is less> ># than 0> >if> n <>0>:> >print>(>'Incorrect input'>)> > ># Check is n is less> ># than len(FibArray)> >elif> n <>len>(FibArray):> >return> FibArray[n]> >else>:> >FibArray.append(fibonacci(n>-> 1>)>+> fibonacci(n>-> 2>))> >return> FibArray[n]> # Driver Program> print>(fibonacci(>9>))> |
>
>Lähtö
34>
Aika monimutkaisuus: Päällä)
Aputila: Päällä)
Fibonacci-sekvenssin optimointi
Tässä myös avaruuden optimointi, jossa ensimmäiset kaksi Fibonacci-lukua ovat 0 ja 1.
Python 3
# Function for nth fibonacci number> def> fibonacci(n):> >a>=> 0> >b>=> 1> > ># Check is n is less> ># than 0> >if> n <>0>:> >print>(>'Incorrect input'>)> > ># Check is n is equal> ># to 0> >elif> n>=>=> 0>:> >return> 0> > ># Check if n is equal to 1> >elif> n>=>=> 1>:> >return> b> >else>:> >for> i>in> range>(>1>, n):> >c>=> a>+> b> >a>=> b> >b>=> c> >return> b> # Driver Program> print>(fibonacci(>9>))> |
>
>Lähtö
34>
Aika monimutkaisuus: Päällä)
Aputila: O(1)
Fibonacci-sekvenssi välimuistin avulla
lru_cache tallentaa tuloksen, jotta meidän ei tarvitse etsiä Fibonaccia samalla numerolla uudelleen.
Python 3
from> functools>import> lru_cache> # Function for nth Fibonacci number> @lru_cache>(>None>)> def> fibonacci(num:>int>)>->>>> ># check if num is less than 0> ># it will return none> >if> num <>0>:> >print>(>'Incorrect input'>)> >return> ># check if num between 1, 0> ># it will return num> >elif> num <>2>:> >return> num> ># return the fibonacci of num - 1 & num - 2> >return> fibonacci(num>-> 1>)>+> fibonacci(num>-> 2>)> # Driver Program> print>(fibonacci(>9>))> |
konekirjoitus foreach silmukka
>
>Lähtö
34>
Aika monimutkaisuus: Päällä)
Aputila: Päällä)
Fibonacci-sekvenssi käyttämällä Backtrackingia
Funktio n:nnelle Fibonacci-luvulle käyttäenPython 3
def> fibonacci(n, memo>=>{}):> >if> n <>=> 0>:> >return> 0> >elif> n>=>=> 1>:> >return> 1> >elif> n>in> memo:> >return> memo[n]> >else>:> >memo[n]>=> fibonacci(n>->1>)>+> fibonacci(n>->2>)> >return> memo[n]> # Driver Program> print>(fibonacci(>9>))> |
>
>Lähtö
34>
Aika monimutkaisuus: Päällä)
Aputila: Päällä)
vasen liitos vs oikea liitos
Katso täydellinen artikkeli aiheesta Ohjelma Fibonacci-numeroille Lisätietoja!