logo

Binaarimatriisin kaikkien nollien kokonaiskattavuus

Kokeile sitä GfG Practicessa ' title= #practiceLinkDiv { näyttö: ei mitään !tärkeää; }

Kun binäärimatriisi sisältää vain 0:t ja 1:t, meidän on löydettävä matriisin kaikkien nollien peittosumma, jossa tietyn nollan kattavuus määritellään nollan ympärillä olevien ykkösten kokonaismääränä vasemmalla oikealla ylös ja alas. Ne voivat olla missä tahansa kulman osoittamaan suuntaan. 

Esimerkkejä:  

Input : mat[][] = {0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 0} Output : 20 First four zeros are surrounded by only one 1. So coverage for zeros in first row is 1 + 1 + 1 + 1 Zeros in second row are surrounded by three 1's. Note that there is no 1 above. There are 1's in all other three directions. Coverage of zeros in second row = 3 + 3. Similarly counting for others also we get overall count as below. 1 + 1 + 1 + 1 + 3 + 3 + 2 + 2 + 2 + 2 + 2 = 20 Input : mat[][] = {1 1 1 0 1 0 0 1} Output : 8 Coverage of first zero is 2 Coverages of other two zeros is 3 Total coverage = 2 + 3 + 3 = 8
Recommended Practice Kaikkien nollien kattavuus binaarimatriisissa Kokeile sitä!

A yksinkertainen ratkaisu Tämän ongelman ratkaiseminen on laskemalla ykkösiä nollien ympäriltä itsenäisesti, eli suoritamme silmukan neljä kertaa kumpaankin suuntaan kullekin solulle tietylle matriisille. Aina kun löydämme 1:n mistä tahansa silmukasta, katkaisemme silmukan ja lisäämme tulosta 1:llä.



An tehokas ratkaisu on tehdä seuraava. 

  1. Siirrä kaikki rivit vasemmalta oikealle, jos 1 on jo näkyvissä (nykyisessä läpikulkussa) ja nykyinen elementti on 0.
  2. Siirrä kaikki rivit oikealta vasemmalle, jos 1 on jo näkyvissä (nykyisessä läpikäymisessä) ja nykyinen elementti on 0.
  3. Siirrä kaikki sarakkeet ylhäältä alas lisäämällä tulosta, jos 1 on jo näkyvissä (nykyisessä läpikäymisessä) ja nykyinen elementti on 0.
  4. Siirrä kaikki sarakkeet alhaalta ylöspäin, jos 1 on jo näkyvissä (nykyisessä läpikäymisessä) ja nykyinen elementti on 0.

Alla olevassa koodissa otetaan Boolen muuttuja isOne, joka tehdään todeksi heti, kun ykkönen kohdataan nykyisessä läpikäymisessä kaikille nollia, sen jälkeen, kun iterointitulosta kasvatetaan yhdellä samaa menettelyä sovelletaan kaikkiin neljään suuntaan lopullisen vastauksen saamiseksi. Palautamme isOne-arvon false jokaisen läpikäynnin jälkeen.

C++
// C++ program to get total coverage of all zeros in // a binary matrix #include    using namespace std; #define R 4 #define C 4 // Returns total coverage of all zeros in mat[][] int getTotalCoverageOfMatrix(int mat[R][C]) {  int res = 0;  // looping for all rows of matrix  for (int i = 0; i < R; i++)  {  bool isOne = false; // 1 is not seen yet  // looping in columns from left to right  // direction to get left ones  for (int j = 0; j < C; j++)  {  // If one is found from left  if (mat[i][j] == 1)  isOne = true;  // If 0 is found and we have found  // a 1 before.  else if (isOne)  res++;  }  // Repeat the above process for right to  // left direction.  isOne = false;  for (int j = C-1; j >= 0; j--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  // Traversing across columns for up and down  // directions.  for (int j = 0; j < C; j++)  {  bool isOne = false; // 1 is not seen yet  for (int i = 0; i < R; i++)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  isOne = false;  for (int i = R-1; i >= 0; i--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  return res; } // Driver code to test above methods int main() {  int mat[R][C] = {{0 0 0 0}  {1 0 0 1}  {0 1 1 0}  {0 1 0 0}  };  cout << getTotalCoverageOfMatrix(mat);  return 0; } 
Java
// Java program to get total  // coverage of all zeros in  // a binary matrix import java .io.*; class GFG  { static int R = 4; static int C = 4; // Returns total coverage // of all zeros in mat[][] static int getTotalCoverageOfMatrix(int [][]mat) {  int res = 0;  // looping for all   // rows of matrix  for (int i = 0; i < R; i++)  {  // 1 is not seen yet  boolean isOne = false;   // looping in columns from   // left to right direction  // to get left ones  for (int j = 0; j < C; j++)  {  // If one is found  // from left  if (mat[i][j] == 1)  isOne = true;  // If 0 is found and we   // have found a 1 before.  else if (isOne)  res++;  }  // Repeat the above   // process for right   // to left direction.  isOne = false;  for (int j = C - 1; j >= 0; j--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  // Traversing across columns  // for up and down directions.  for (int j = 0; j < C; j++)  {  // 1 is not seen yet  boolean isOne = false;   for (int i = 0; i < R; i++)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  isOne = false;  for (int i = R - 1; i >= 0; i--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  return res; } // Driver code  static public void main (String[] args) {  int [][]mat = {{0 0 0 0}  {1 0 0 1}  {0 1 1 0}  {0 1 0 0}}; System.out.println(  getTotalCoverageOfMatrix(mat)); } } // This code is contributed by anuj_67. 
Python3
# Python3 program to get total coverage of all zeros in # a binary matrix R = 4 C = 4 # Returns total coverage of all zeros in mat[][] def getTotalCoverageOfMatrix(mat): res = 0 # looping for all rows of matrix for i in range(R): isOne = False # 1 is not seen yet # looping in columns from left to right # direction to get left ones for j in range(C): # If one is found from left if (mat[i][j] == 1): isOne = True # If 0 is found and we have found # a 1 before. else if (isOne): res += 1 # Repeat the above process for right to # left direction. isOne = False for j in range(C - 1 -1 -1): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 # Traversing across columns for up and down # directions. for j in range(C): isOne = False # 1 is not seen yet for i in range(R): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 isOne = False for i in range(R - 1 -1 -1): if (mat[i][j] == 1): isOne = True else if (isOne): res += 1 return res # Driver code mat = [[0 0 0 0][1 0 0 1][0 1 1 0][0 1 0 0]] print(getTotalCoverageOfMatrix(mat)) # This code is contributed by shubhamsingh10 
C#
// C# program to get total coverage  // of all zeros in a binary matrix using System; class GFG {   static int R = 4; static int C = 4; // Returns total coverage of all zeros in mat[][] static int getTotalCoverageOfMatrix(int []mat) {  int res = 0;  // looping for all rows of matrix  for (int i = 0; i < R; i++)  {  // 1 is not seen yet  bool isOne = false;   // looping in columns from left to   // right direction to get left ones  for (int j = 0; j < C; j++)  {  // If one is found from left  if (mat[ij] == 1)  isOne = true;  // If 0 is found and we   // have found a 1 before.  else if (isOne)  res++;  }  // Repeat the above process for   // right to left direction.  isOne = false;  for (int j = C-1; j >= 0; j--)  {  if (mat[ij] == 1)  isOne = true;  else if (isOne)  res++;  }  }  // Traversing across columns  // for up and down directions.  for (int j = 0; j < C; j++)  {  // 1 is not seen yet  bool isOne = false;   for (int i = 0; i < R; i++)  {  if (mat[ij] == 1)  isOne = true;  else if (isOne)  res++;  }  isOne = false;  for (int i = R-1; i >= 0; i--)  {  if (mat[ij] == 1)  isOne = true;  else if (isOne)  res++;  }  }  return res; } // Driver code to test above methods  static public void Main ()  {  int []mat = {{0 0 0 0}  {1 0 0 1}  {0 1 1 0}  {0 1 0 0}};  Console.WriteLine(getTotalCoverageOfMatrix(mat));  } } // This code is contributed by vt_m. 
JavaScript
<script>  // Javascript program to get total   // coverage of all zeros in   // a binary matrix    let R = 4;  let C = 4;  // Returns total coverage  // of all zeros in mat[][]  function getTotalCoverageOfMatrix(mat)  {  let res = 0;  // looping for all   // rows of matrix  for (let i = 0; i < R; i++)  {  // 1 is not seen yet  let isOne = false;   // looping in columns from   // left to right direction  // to get left ones  for (let j = 0; j < C; j++)  {  // If one is found  // from left  if (mat[i][j] == 1)  isOne = true;  // If 0 is found and we   // have found a 1 before.  else if (isOne)  res++;  }  // Repeat the above   // process for right   // to left direction.  isOne = false;  for (let j = C - 1; j >= 0; j--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  // Traversing across columns  // for up and down directions.  for (let j = 0; j < C; j++)  {  // 1 is not seen yet  let isOne = false;   for (let i = 0; i < R; i++)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  isOne = false;  for (let i = R - 1; i >= 0; i--)  {  if (mat[i][j] == 1)  isOne = true;  else if (isOne)  res++;  }  }  return res;  }    let mat = [[0 0 0 0]  [1 0 0 1]  [0 1 1 0]  [0 1 0 0]];    document.write(getTotalCoverageOfMatrix(mat)); </script> 

Lähtö
20

Aika monimutkaisuus: O(n2
Aputila: O(1)

 

Luo tietokilpailu