logo

C++ mallit

C++-malli on tehokas ominaisuus, joka on lisätty C++:aan. Sen avulla voit määrittää yleiset luokat ja yleiset funktiot ja tarjoaa siten tukea yleiselle ohjelmointille. Geneerinen ohjelmointi on tekniikka, jossa geneerisiä tyyppejä käytetään parametreina algoritmeissa, jotta ne voivat toimia eri tietotyypeillä.

Mallit voidaan esittää kahdella tavalla:

  • Toimintomallit
  • Luokkamallit
C++ mallit

Toimintomallit:



Voimme määrittää funktiolle mallin. Jos meillä on esimerkiksi add()-funktio, voimme luoda add-funktiosta versioita int-, float- tai double-tyyppisten arvojen lisäämistä varten.

Luokkamalli:

Voimme määritellä luokalle mallin. Esimerkiksi taulukkoluokalle voidaan luoda luokkamalli, joka voi hyväksyä erityyppisiä taulukoita, kuten int array, float array tai double array.


Toimintomalli

  • Yleiset funktiot käyttävät funktiomallin käsitettä. Yleiset funktiot määrittelevät joukon toimintoja, joita voidaan soveltaa erityyppisiin tietoihin.
  • Tietojen tyyppi, jolla toiminto toimii, riippuu parametrina välitettävien tietojen tyypistä.
  • Esimerkiksi pikalajittelualgoritmi on toteutettu geneerisellä funktiolla, se voidaan toteuttaa kokonaislukumatriisin tai float-taulukon mukaan.
  • Yleinen funktio luodaan käyttämällä avainsanamallia. Malli määrittää, mitä toimintoa tekee.

Funktiomallin syntaksi

 template ret_type func_name(parameter_list) { // body of function. } 

Missä Ttyyppi : Se on paikkamerkki funktion käyttämälle tietotyypille. Sitä käytetään funktion määrittelyssä. Se on vain paikkamerkki, jonka kääntäjä korvaa tämän paikkamerkin automaattisesti todellisella tietotyypillä.

luokkaa : Luokan avainsanaa käytetään määrittämään yleinen tyyppi mallin ilmoituksessa.

Katsotaanpa yksinkertainen esimerkki funktiomallista:

 #include using namespace std; template T add(T &amp;a,T &amp;b) { T result = a+b; return result; } int main() { int i =2; int j =3; float m = 2.3; float n = 1.2; cout&lt;<'addition of i and j is :'< <add(i,j); cout<<'
'; cout<<'addition m n <add(m,n); return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> Addition of i and j is :5 Addition of m and n is :3.5 </pre> <p>In the above example, we create the function template which can perform the addition operation on any type either it can be integer, float or double.</p> <h3>Function Templates with Multiple Parameters</h3> <p>We can use more than one generic type in the template function by using the comma to separate the list.</p> <h2>Syntax</h2> <pre> template return_type function_name (arguments of type T1, T2....) { // body of function. } </pre> <p>In the above syntax, we have seen that the template function can accept any number of arguments of a different type.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a,Y b) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; std::cout << 'value of b is : ' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << 'value of is : ' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<'value of a is : '< <a<<'
'; } void fun(int b) { if(b%2="=0)" cout<<'number even'; else odd'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<' ,'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] ' '; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></'></pre></std::endl;></pre></'value></pre></a<<></pre></a<<></pre></'addition>

Yllä olevassa esimerkissä luomme funktiomallin, joka voi suorittaa lisäysoperaation mille tahansa tyypille, joko kokonaisluku, kelluva tai kaksoisluku.

Toimintomallit, joissa on useita parametreja

Voimme käyttää useampaa kuin yhtä yleistä tyyppiä mallifunktiossa käyttämällä pilkkua listan erottamiseen.

Syntaksi

 template return_type function_name (arguments of type T1, T2....) { // body of function. } 

Yllä olevassa syntaksissa olemme nähneet, että mallifunktio voi hyväksyä minkä tahansa määrän erityyppisiä argumentteja.

kolminkertainen talvi

Katsotaanpa yksinkertainen esimerkki:

 #include using namespace std; template void fun(X a,Y b) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; std::cout << \'value of b is : \' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<></pre></a<<>

Yllä olevassa esimerkissä käytämme kahta yleistä tyyppiä mallifunktiossa, eli X ja Y.

Funktiomallin ylikuormitus

Voimme ylikuormittaa yleisfunktiota, mikä tarkoittaa, että ylikuormitetut mallifunktiot voivat vaihdella parametriluettelossa.

Ymmärretään tämä yksinkertaisen esimerkin kautta:

 #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<>

Yllä olevassa esimerkissä fun()-funktion malli on ylikuormitettu.

Yleisten toimintojen rajoitukset

Yleiset funktiot suorittavat saman toiminnon kaikille funktion versioille, paitsi että tietotyyppi eroaa. Katsotaanpa yksinkertaista esimerkkiä ylikuormitetusta funktiosta, jota ei voi korvata yleisellä funktiolla, koska molemmilla toiminnoilla on eri toiminnot.

usa kuinka monta kaupunkia

Ymmärretään tämä yksinkertaisen esimerkin kautta:

 #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value>

Yllä olevassa esimerkissä ylikuormitamme tavallisia toimintoja. Emme voi ylikuormittaa yleisiä toimintoja, koska molemmilla toiminnoilla on erilaiset toiminnot. Ensimmäinen näyttää arvon ja toinen määrittää, onko luku parillinen vai ei.


LUOKAN MALLI

Luokkamalli voidaan myös määrittää samalla tavalla kuin Function Template. Kun luokka käyttää mallin käsitettä, luokka tunnetaan yleisenä luokkana.

Syntaksi

 template class class_name { . . } 

Ttyyppi on paikkamerkki, joka määritetään, kun luokka instantoidaan. Voimme määrittää useamman kuin yhden yleisen tietotyypin käyttämällä pilkuilla eroteltua luetteloa. T-tyyppiä voidaan käyttää luokan rungon sisällä.

Nyt luomme luokan esiintymän

 class_name ob; 

missä luokan_nimi : Se on luokan nimi.

tyyppi : Se on datatyyppi, jota luokka käyttää.

klo : Se on objektin nimi.

Katsotaanpa yksinkertainen esimerkki:

 #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;>

Yllä olevassa esimerkissä luomme mallin luokalle A. Main()-metodin sisällä luomme luokan A esiintymän, jonka nimi on 'd'.

LUOKAN MALLI USEIN PARAMETRIIN

Voimme käyttää useampaa kuin yhtä yleistä tietotyyppiä luokkamallissa, ja jokainen yleinen tietotyyppi erotetaan pilkulla.

Syntaksi

 template class class_name { // Body of the class. } 

Katsotaanpa yksinkertainen esimerkki, kun luokkamalli sisältää kaksi yleistä tietotyyppiä.

 #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\\' ,\\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\\'>

Ei-tyyppiset malliargumentit

Malli voi sisältää useita argumentteja, ja voimme käyttää myös ei-tyyppisiä argumentteja T-tyypin argumentin lisäksi voimme käyttää myös muuntyyppisiä argumentteja, kuten merkkijonoja, funktioiden nimiä, vakiolausekkeita ja sisäänrakennettuja tyyppejä. Katsotaanpa seuraava esimerkki:

 template class array { T arr[size]; // automatic array initialization. }; 

Yllä olevassa tapauksessa nontype mallin argumentti on koko, ja siksi malli antaa taulukon koon argumenttina.

Argumentit määritetään, kun luokan objektit luodaan:

 array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. 

Katsotaanpa yksinkertainen esimerkki ei-tyyppisistä malliargumenteista.

miten java päivitetään
 #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)>

Yllä olevassa esimerkissä luodaan luokkamalli, joka sisältää nontype-mallipohjan argumentin, eli koon. Se määritetään, kun luokan 'A' objekti luodaan.

Muistettavat kohdat

  • C++ tukee tehokasta ominaisuutta, joka tunnetaan mallina, joka toteuttaa yleisen ohjelmoinnin konseptin.
  • Mallin avulla voimme luoda luokkien perheen tai funktioperheen käsittelemään erilaisia ​​tietotyyppejä.
  • Malliluokat ja funktiot eliminoivat eri tietotyyppien koodin päällekkäisyyden ja tekevät siten kehittämisestä helpompaa ja nopeampaa.
  • Useita parametreja voidaan käyttää sekä luokka- että funktiomallissa.
  • Mallitoiminnot voivat myös ylikuormittua.
  • Voimme käyttää malliargumentteina myös ei-tyyppisiä argumentteja, kuten sisäänrakennettuja tai johdettuja tietotyyppejä.