logo

Kahden luvun yhteiset jakajat

Kun on annettu kaksi kokonaislukua, tehtävänä on löytää annettujen lukujen kaikkien yhteisten jakajien määrä?

Esimerkkejä:  

Input : a = 12 b = 24 Output: 6 // all common divisors are 1 2 3 // 4 6 and 12 Input : a = 3 b = 17 Output: 1 // all common divisors are 1 Input : a = 20 b = 36 Output: 3 // all common divisors are 1 2 4
Recommended Practice Yhteiset jakajat Kokeile sitä!

On suositeltavaa viitata kaikki tietyn luvun jakajat tämän artikkelin edellytyksenä. 



Naiivi ratkaisu  
Yksinkertainen ratkaisu on etsiä ensin kaikki ensimmäisen luvun jakajat ja tallentaa ne taulukkoon tai tiivisteeseen. Etsi sitten toisen luvun yhteiset jakajat ja tallenna ne. Tulosta lopuksi kahden tallennetun taulukon tai tiivisteen yhteiset elementit. Tärkeintä on, että jakajan alkutekijöiden potenssien suuruuden tulee olla yhtä suuri kuin a:n ja b:n kahden alkutekijän minimipotenssi.

  • Etsi käytön päätekijät päätekijälaskenta .
  • Etsi kunkin alkutekijän lukumäärä a ja tallenna se Hashmappiin.
  • Prime factorize b käyttämällä erillisiä alkutekijöitä a .
  • Silloin jakajien kokonaismäärä olisi yhtä suuri kuin tuotteen (luku + 1) 
    jokaisesta tekijästä.
  • laskeaon kunkin alkutekijän vähimmäismäärä a ja b.
  • Tämä antaa kaikkien jakajien määrän a ja b .
C++
// C++ implementation of program  #include    using namespace std; // Map to store the count of each // prime factor of a  map<int int> ma; // Function that calculate the count of  // each prime factor of a number  void primeFactorize(int a)  {   for(int i = 2; i * i <= a; i += 2)   {   int cnt = 0;   while (a % i == 0)   {   cnt++;   a /= i;   }   ma[i] = cnt;   }   if (a > 1)  {  ma[a] = 1;  } }  // Function to calculate all common // divisors of two given numbers  // a b --> input integer numbers  int commDiv(int a int b)  {     // Find count of each prime factor of a   primeFactorize(a);   // stores number of common divisors   int res = 1;   // Find the count of prime factors   // of b using distinct prime factors of a   for(auto m = ma.begin();  m != ma.end(); m++)  {  int cnt = 0;   int key = m->first;   int value = m->second;   while (b % key == 0)   {   b /= key;   cnt++;   }   // Prime factor of common divisor   // has minimum cnt of both a and b   res *= (min(cnt value) + 1);   }   return res;  }  // Driver code  int main() {  int a = 12 b = 24;     cout << commDiv(a b) << endl;     return 0; } // This code is contributed by divyeshrabadiya07 
Java
// Java implementation of program import java.util.*; import java.io.*; class GFG {  // map to store the count of each prime factor of a  static HashMap<Integer Integer> ma = new HashMap<>();  // method that calculate the count of  // each prime factor of a number  static void primeFactorize(int a)  {  for (int i = 2; i * i <= a; i += 2) {  int cnt = 0;  while (a % i == 0) {  cnt++;  a /= i;  }  ma.put(i cnt);  }  if (a > 1)  ma.put(a 1);  }  // method to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  static int commDiv(int a int b)  {  // Find count of each prime factor of a  primeFactorize(a);  // stores number of common divisors  int res = 1;  // Find the count of prime factors of b using  // distinct prime factors of a  for (Map.Entry<Integer Integer> m : ma.entrySet()) {  int cnt = 0;  int key = m.getKey();  int value = m.getValue();  while (b % key == 0) {  b /= key;  cnt++;  }  // prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.min(cnt value) + 1);  }  return res;  }  // Driver method  public static void main(String args[])  {  int a = 12 b = 24;  System.out.println(commDiv(a b));  } } 
Python3
# Python3 implementation of program  import math # Map to store the count of each # prime factor of a  ma = {} # Function that calculate the count of  # each prime factor of a number  def primeFactorize(a): sqt = int(math.sqrt(a)) for i in range(2 sqt 2): cnt = 0 while (a % i == 0): cnt += 1 a /= i ma[i] = cnt if (a > 1): ma[a] = 1 # Function to calculate all common # divisors of two given numbers  # a b --> input integer numbers  def commDiv(a b): # Find count of each prime factor of a  primeFactorize(a) # stores number of common divisors  res = 1 # Find the count of prime factors  # of b using distinct prime factors of a  for key value in ma.items(): cnt = 0 while (b % key == 0): b /= key cnt += 1 # Prime factor of common divisor  # has minimum cnt of both a and b  res *= (min(cnt value) + 1) return res # Driver code  a = 12 b = 24 print(commDiv(a b)) # This code is contributed by Stream_Cipher 
C#
// C# implementation of program using System; using System.Collections.Generic;  class GFG{   // Map to store the count of each  // prime factor of a static Dictionary<int  int> ma = new Dictionary<int  int>(); // Function that calculate the count of // each prime factor of a number static void primeFactorize(int a) {  for(int i = 2; i * i <= a; i += 2)  {  int cnt = 0;  while (a % i == 0)  {  cnt++;  a /= i;  }  ma.Add(i cnt);  }    if (a > 1)  ma.Add(a 1); } // Function to calculate all common  // divisors of two given numbers // a b --> input integer numbers static int commDiv(int a int b) {    // Find count of each prime factor of a  primeFactorize(a);    // Stores number of common divisors  int res = 1;    // Find the count of prime factors  // of b using distinct prime factors of a  foreach(KeyValuePair<int int> m in ma)  {  int cnt = 0;  int key = m.Key;  int value = m.Value;    while (b % key == 0)  {  b /= key;  cnt++;  }  // Prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.Min(cnt value) + 1);  }  return res; } // Driver code  static void Main() {  int a = 12 b = 24;    Console.WriteLine(commDiv(a b)); } } // This code is contributed by divyesh072019 
JavaScript
<script>   // JavaScript implementation of program  // Map to store the count of each  // prime factor of a  let ma = new Map();  // Function that calculate the count of  // each prime factor of a number  function primeFactorize(a)  {  for(let i = 2; i * i <= a; i += 2)  {  let cnt = 0;  while (a % i == 0)  {  cnt++;  a = parseInt(a / i 10);  }  ma.set(i cnt);  }  if (a > 1)  {  ma.set(a 1);  }  }  // Function to calculate all common  // divisors of two given numbers  // a b --> input integer numbers  function commDiv(ab)  {  // Find count of each prime factor of a  primeFactorize(a);  // stores number of common divisors  let res = 1;  // Find the count of prime factors  // of b using distinct prime factors of a  ma.forEach((valueskeys)=>{  let cnt = 0;  let key = keys;  let value = values;  while (b % key == 0)  {  b = parseInt(b / key 10);  cnt++;  }  // Prime factor of common divisor  // has minimum cnt of both a and b  res *= (Math.min(cnt value) + 1);  })  return res;  }  // Driver code  let a = 12 b = 24;    document.write(commDiv(a b));   </script> 

Lähtö:  

6

Aika monimutkaisuus : O(?n log n) 
Aputila: O(n)


Tehokas ratkaisu - 
Parempi ratkaisu on laskea suurin yhteinen jakaja (gcd) annetusta kahdesta luvusta ja laske sitten kyseisen gcd:n jakajat. 

C++
// C++ implementation of program #include    using namespace std; // Function to calculate gcd of two numbers int gcd(int a int b) {  if (a == 0)  return b;  return gcd(b % a a); } // Function to calculate all common divisors // of two given numbers // a b --> input integer numbers int commDiv(int a int b) {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result; } // Driver program to run the case int main() {  int a = 12 b = 24;  cout << commDiv(a b);  return 0; } 
Java
// Java implementation of program class Test {  // method to calculate gcd of two numbers  static int gcd(int a int b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // method to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  static int commDiv(int a int b)  {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= Math.sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  // Driver method  public static void main(String args[])  {  int a = 12 b = 24;  System.out.println(commDiv(a b));  } } 
Python3
# Python implementation of program from math import sqrt # Function to calculate gcd of two numbers def gcd(a b): if a == 0: return b return gcd(b % a a) # Function to calculate all common divisors  # of two given numbers  # a b --> input integer numbers  def commDiv(a b): # find GCD of a b n = gcd(a b) # Count divisors of n result = 0 for i in range(1int(sqrt(n))+1): # if i is a factor of n if n % i == 0: # check if divisors are equal if n/i == i: result += 1 else: result += 2 return result # Driver program to run the case  if __name__ == '__main__': a = 12 b = 24; print(commDiv(a b)) 
C#
// C# implementation of program using System; class GFG {  // method to calculate gcd  // of two numbers  static int gcd(int a int b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // method to calculate all  // common divisors of two  // given numbers a b -->  // input integer numbers  static int commDiv(int a int b)  {  // find gcd of a b  int n = gcd(a b);  // Count divisors of n.  int result = 0;  for (int i = 1; i <= Math.Sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  // Driver method  public static void Main(String[] args)  {  int a = 12 b = 24;  Console.Write(commDiv(a b));  } } // This code contributed by parashar. 
PHP
 // PHP implementation of program // Function to calculate  // gcd of two numbers function gcd($a $b) { if ($a == 0) return $b; return gcd($b % $a $a); } // Function to calculate all common  // divisors of two given numbers // a b --> input integer numbers function commDiv($a $b) { // find gcd of a b $n = gcd($a $b); // Count divisors of n. $result = 0; for ($i = 1; $i <= sqrt($n); $i++) { // if 'i' is factor of n if ($n % $i == 0) { // check if divisors  // are equal if ($n / $i == $i) $result += 1; else $result += 2; } } return $result; } // Driver Code $a = 12; $b = 24; echo(commDiv($a $b)); // This code is contributed by Ajit. ?> 
JavaScript
<script>  // Javascript implementation of program    // Function to calculate gcd of two numbers  function gcd(a b)  {  if (a == 0)  return b;  return gcd(b % a a);  }  // Function to calculate all common divisors  // of two given numbers  // a b --> input integer numbers  function commDiv(a b)  {  // find gcd of a b  let n = gcd(a b);  // Count divisors of n.  let result = 0;  for (let i = 1; i <= Math.sqrt(n); i++) {  // if 'i' is factor of n  if (n % i == 0) {  // check if divisors are equal  if (n / i == i)  result += 1;  else  result += 2;  }  }  return result;  }  let a = 12 b = 24;  document.write(commDiv(a b));   </script> 

Lähtö:   

6

Aika monimutkaisuus: O(n1/2) jossa n on kahden luvun gcd.
Aputila: O(1)

Toinen lähestymistapa:

1. Määrittele funktio 'gcd', joka ottaa kaksi kokonaislukua 'a' ja 'b' ja palauttaa niiden suurimman yhteisen jakajan (GCD) käyttämällä euklidelaista algoritmia.
2. Määrittele funktio 'count_common_divisors', joka ottaa kaksi kokonaislukua 'a' ja 'b' ja laskee 'a':n ja 'b'n yhteisten jakajien määrän niiden GCD:n avulla.
3. Laske 'a' ja 'b':n GCD käyttämällä 'gcd'-funktiota.
4. Alusta laskurin 'count' nollaksi.
5. Kierrä kaikki mahdolliset GCD:n 'a' ja 'b' jakajat luvusta 1 GCD:n neliöjuureen.
6. Jos virran jakaja jakaa GCD:n tasaisesti, lisää laskuria kahdella (koska sekä 'a' että 'b' ovat jaollisia jakajalla).
7. Jos nykyisen jakajan neliö on yhtä suuri kuin GCD, vähennä laskuria 1:llä (koska olemme jo laskeneet tämän jakajan kerran).
8. Palauta yhteisten jakajien lopullinen määrä.
9. Määritä pääfunktiossa kaksi kokonaislukua 'a' ja 'b' ja kutsu 'count_common_divisors'-funktiota näillä kokonaisluvuilla.
10. Tulosta a:n ja b:n yhteisten jakajien määrä printf-funktiolla.

C
#include  int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b); } int count_common_divisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count; } int main() {  int a = 12;  int b = 18;  int common_divisors = count_common_divisors(a b);  printf('The number of common divisors of %d and %d is %d.n' a b common_divisors);  return 0; } 
C++
#include    using namespace std; int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b); } int count_common_divisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count; } int main() {  int a = 12;  int b = 18;  int common_divisors = count_common_divisors(a b);  cout<<'The number of common divisors of '<<a<<' and '<<b<<' is '<<common_divisors<<'.'<<endl;  return 0; } 
Java
import java.util.*; public class Main {  public static int gcd(int a int b) {  if(b == 0) {  return a;  }  return gcd(b a % b);  }  public static int countCommonDivisors(int a int b) {  int gcd_ab = gcd(a b);  int count = 0;  for(int i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i == 0) {  count += 2;  if(i * i == gcd_ab) {  count--;  }  }  }  return count;  }  public static void main(String[] args) {  int a = 12;  int b = 18;  int commonDivisors = countCommonDivisors(a b);  System.out.println('The number of common divisors of ' + a + ' and ' + b + ' is ' + commonDivisors + '.');  } } 
Python3
import math def gcd(a b): if b == 0: return a return gcd(b a % b) def count_common_divisors(a b): gcd_ab = gcd(a b) count = 0 for i in range(1 int(math.sqrt(gcd_ab)) + 1): if gcd_ab % i == 0: count += 2 if i * i == gcd_ab: count -= 1 return count a = 12 b = 18 common_divisors = count_common_divisors(a b) print('The number of common divisors of' a 'and' b 'is' common_divisors '.') # This code is contributed by Prajwal Kandekar 
C#
using System; public class MainClass {  public static int GCD(int a int b)  {  if (b == 0)  {  return a;  }  return GCD(b a % b);  }  public static int CountCommonDivisors(int a int b)  {  int gcd_ab = GCD(a b);  int count = 0;  for (int i = 1; i * i <= gcd_ab; i++)  {  if (gcd_ab % i == 0)  {  count += 2;  if (i * i == gcd_ab)  {  count--;  }  }  }  return count;  }  public static void Main()  {  int a = 12;  int b = 18;  int commonDivisors = CountCommonDivisors(a b);  Console.WriteLine('The number of common divisors of {0} and {1} is {2}.' a b commonDivisors);  } } 
JavaScript
// Function to calculate the greatest common divisor of  // two integers a and b using the Euclidean algorithm function gcd(a b) {  if(b === 0) {  return a;  }  return gcd(b a % b); } // Function to count the number of common divisors of two integers a and b function count_common_divisors(a b) {  let gcd_ab = gcd(a b);  let count = 0;  for(let i = 1; i * i <= gcd_ab; i++) {  if(gcd_ab % i === 0) {  count += 2;  if(i * i === gcd_ab) {  count--;  }  }  }  return count; } let a = 12; let b = 18; let common_divisors = count_common_divisors(a b); console.log(`The number of common divisors of ${a} and ${b} is ${common_divisors}.`); 

Lähtö
The number of common divisors of 12 and 18 is 4.

Gcd()-funktion aikamonimutkaisuus on O(log(min(a b))), koska se käyttää Euklidin algoritmia, joka ottaa logaritmisen ajan suhteessa pienempään kahdesta luvusta.

count_common_divisors()-funktion aikamonimutkaisuus on O(sqrt(gcd(a b))), koska se toistuu kahden luvun gcd:n neliöjuureen asti.

Molempien funktioiden tilamonimutkaisuus on O(1), koska ne käyttävät vain vakiomäärän muistia tulokoosta riippumatta.