logo

Laske maksimipisteet samalla rivillä

Kokeile sitä GfG Practicessa ' title=

Annettaessa n pistettä 2D-tasolla (x y)-koordinaattien parina meidän on löydettävä suurin määrä pisteitä, jotka sijaitsevat samalla suoralla.

Esimerkkejä: 

Syöte : pisteet[] = {-1 1} {0 0} {1 1}
{2 2} {3 3} {3 4}
Lähtö : 4
Sitten suurin määrä pisteitä, jotka sijaitsevat samalla tasolla
rivit ovat 4, ne pisteet ovat {0 0} {1 1} {2 2}
{3 3}



reactjs kartta

Laske jokaiselle pisteelle p sen kaltevuus muiden pisteiden kanssa ja käytä karttaa kirjaamaan kuinka monella pisteellä on sama kaltevuus, jonka avulla voimme selvittää, kuinka monta pistettä on samalla suoralla, jossa p on niiden yksi piste. Tee jokaiselle pisteelle sama asia ja päivitä tähän mennessä löydetty enimmäispistemäärä.

Toteutuksessa on otettava huomioon seuraavat asiat: 

bash jos kunto
  1. jos kaksi pistettä ovat (x1 y1) ja (x2 y2), niin niiden kaltevuus on (y2 – y1) / (x2 – x1), mikä voi olla kaksinkertainen arvo ja voi aiheuttaa tarkkuusongelmia. Päästäksemme eroon tarkkuusongelmista käsittelemme kaltevuutta parina ((y2 - y1) (x2 - x1)) suhteen sijaan ja pienennämme paria niiden gcd:llä ennen lisäämistä karttaan. Alla olevassa koodissa pystysuorat tai toistuvat kohdat käsitellään erikseen.
  2. Jos käytämme kaltevuusparin tallentamiseen Hash Map tai Dictionary, niin ratkaisun kokonaisaikakompleksisuus on O(n^2) ja avaruuden kompleksisuus on O(n).
C++
/* C/C++ program to find maximum number of point which lie on same line */ #include    #include    using namespace std; // method to find maximum collinear point int maxPointOnSameLine(vector< pair<int int> > points) {  int N = points.size();  if (N < 2)  return N;  int maxPoint = 0;  int curMax overlapPoints verticalPoints;  // here since we are using unordered_map   // which is based on hash function   //But by default we don't have hash function for pairs  //so we'll use hash function defined in Boost library  unordered_map<pair<int int> intboost::  hash<pair<int int> > > slopeMap;  // looping for each point  for (int i = 0; i < N; i++)  {  curMax = overlapPoints = verticalPoints = 0;  // looping from i + 1 to ignore same pair again  for (int j = i + 1; j < N; j++)  {  // If both point are equal then just  // increase overlapPoint count  if (points[i] == points[j])  overlapPoints++;  // If x co-ordinate is same then both  // point are vertical to each other  else if (points[i].first == points[j].first)  verticalPoints++;  else  {  int yDif = points[j].second - points[i].second;  int xDif = points[j].first - points[i].first;  int g = __gcd(xDif yDif);  // reducing the difference by their gcd  yDif /= g;  xDif /= g;  // increasing the frequency of current slope  // in map  slopeMap[make_pair(yDif xDif)]++;  curMax = max(curMax slopeMap[make_pair(yDif xDif)]);  }  curMax = max(curMax verticalPoints);  }  // updating global maximum by current point's maximum  maxPoint = max(maxPoint curMax + overlapPoints + 1);  // printf('maximum collinear point   // which contains current point   // are : %dn' curMax + overlapPoints + 1);  slopeMap.clear();  }  return maxPoint; } // Driver code int main() {  const int N = 6;  int arr[N][2] = {{-1 1} {0 0} {1 1} {2 2}  {3 3} {3 4}};  vector< pair<int int> > points;  for (int i = 0; i < N; i++)  points.push_back(make_pair(arr[i][0] arr[i][1]));  cout << maxPointOnSameLine(points) << endl;  return 0; } 
Java
/* Java program to find maximum number of point which lie on same line */ import java.util.*; class GFG {  static int gcd(int p int q)  {  if (q == 0) {  return p;  }  int r = p % q;  return gcd(q r);  }  static int N = 6;  // method to find maximum collinear point  static int maxPointOnSameLine(int[][] points)  {  if (N < 2)  return N;  int maxPoint = 0;  int curMax overlapPoints verticalPoints;  HashMap<String Integer> slopeMap = new HashMap<>();  // looping for each point  for (int i = 0; i < N; i++) {  curMax = overlapPoints = verticalPoints = 0;  // looping from i + 1 to ignore same pair again  for (int j = i + 1; j < N; j++) {  // If both point are equal then just  // increase overlapPoint count  if (points[i][0] == points[j][0]  && points[i][1] == points[j][1])  overlapPoints++;  // If x co-ordinate is same then both  // point are vertical to each other  else if (points[i][0] == points[j][0])  verticalPoints++;  else {  int yDif = points[j][1] - points[i][1];  int xDif = points[j][0] - points[i][0];  int g = gcd(xDif yDif);  // reducing the difference by their gcd  yDif /= g;  xDif /= g;  // Convert the pair into a string to use  // as dictionary key  String pair = (yDif) + ' ' + (xDif);  if (!slopeMap.containsKey(pair))  slopeMap.put(pair 0);  // increasing the frequency of current  // slope in map  slopeMap.put(pair  slopeMap.get(pair) + 1);  curMax = Math.max(curMax  slopeMap.get(pair));  }  curMax = Math.max(curMax verticalPoints);  }  // updating global maximum by current point's  // maximum  maxPoint = Math.max(maxPoint  curMax + overlapPoints + 1);  slopeMap.clear();  }  return maxPoint;  }  public static void main(String[] args)  {  int points[][] = { { -1 1 } { 0 0 } { 1 1 }  { 2 2 } { 3 3 } { 3 4 } };  System.out.println(maxPointOnSameLine(points));  } } 
Python
# python3 program to find maximum number of 2D points that lie on the same line. from collections import defaultdict from math import gcd from typing import DefaultDict List Tuple IntPair = Tuple[int int] def normalized_slope(a: IntPair b: IntPair) -> IntPair:  '''  Returns normalized (rise run) tuple. We won't return the actual rise/run  result in order to avoid floating point math which leads to faulty  comparisons.  See  https://en.wikipedia.org/wiki/Floating-point_arithmetic#Accuracy_problems  ''' run = b[0] - a[0] # normalize undefined slopes to (1 0) if run == 0: return (1 0) # normalize to left-to-right if run < 0: a b = b a run = b[0] - a[0] rise = b[1] - a[1] # Normalize by greatest common divisor. # math.gcd only works on positive numbers. gcd_ = gcd(abs(rise) run) return ( rise // gcd_ run // gcd_ ) def maximum_points_on_same_line(points: List[List[int]]) -> int: # You need at least 3 points to potentially have non-collinear points. # For [0 2] points all points are on the same line. if len(points) < 3: return len(points) # Note that every line we find will have at least 2 points. # There will be at least one line because len(points) >= 3. # Therefore it's safe to initialize to 0. max_val = 0 for a_index in range(0 len(points) - 1): # All lines in this iteration go through point a. # Note that lines a-b and a-c cannot be parallel. # Therefore if lines a-b and a-c have the same slope they're the same # line. a = tuple(points[a_index]) # Fresh lines already have a so default=1 slope_counts: DefaultDict[IntPair int] = defaultdict(lambda: 1) for b_index in range(a_index + 1 len(points)): b = tuple(points[b_index]) slope_counts[normalized_slope(a b)] += 1 max_val = max( max_val max(slope_counts.values()) ) return max_val print(maximum_points_on_same_line([ [-1 1] [0 0] [1 1] [2 2] [3 3] [3 4] ])) # This code is contributed by Jose Alvarado Torre 
C#
/* C# program to find maximum number of point which lie on same line */ using System; using System.Collections.Generic; class GFG {  static int gcd(int p int q)  {  if (q == 0) {  return p;  }  int r = p % q;  return gcd(q r);  }  static int N = 6;  // method to find maximum collinear point  static int maxPointOnSameLine(int[ ] points)  {  if (N < 2)  return N;  int maxPoint = 0;  int curMax overlapPoints verticalPoints;  Dictionary<string int> slopeMap  = new Dictionary<string int>();  // looping for each point  for (int i = 0; i < N; i++) {  curMax = overlapPoints = verticalPoints = 0;  // looping from i + 1 to ignore same pair again  for (int j = i + 1; j < N; j++) {  // If both point are equal then just  // increase overlapPoint count  if (points[i 0] == points[j 0]  && points[i 1] == points[j 1])  overlapPoints++;  // If x co-ordinate is same then both  // point are vertical to each other  else if (points[i 0] == points[j 0])  verticalPoints++;  else {  int yDif = points[j 1] - points[i 1];  int xDif = points[j 0] - points[i 0];  int g = gcd(xDif yDif);  // reducing the difference by their gcd  yDif /= g;  xDif /= g;  // Convert the pair into a string to use  // as dictionary key  string pair = Convert.ToString(yDif)  + ' '  + Convert.ToString(xDif);  if (!slopeMap.ContainsKey(pair))  slopeMap[pair] = 0;  // increasing the frequency of current  // slope in map  slopeMap[pair]++;  curMax  = Math.Max(curMax slopeMap[pair]);  }  curMax = Math.Max(curMax verticalPoints);  }  // updating global maximum by current point's  // maximum  maxPoint = Math.Max(maxPoint  curMax + overlapPoints + 1);  slopeMap.Clear();  }  return maxPoint;  }  // Driver code  public static void Main(string[] args)  {  int[ ] points = { { -1 1 } { 0 0 } { 1 1 }  { 2 2 } { 3 3 } { 3 4 } };  Console.WriteLine(maxPointOnSameLine(points));  } } // This code is contributed by phasing17 
JavaScript
/* JavaScript program to find maximum number of point which lie on same line */ // Function to find gcd of two numbers let gcd = function(a b) {  if (!b) {  return a;  }  return gcd(b a % b); } // method to find maximum collinear point function maxPointOnSameLine(points){  let N = points.length;  if (N < 2){  return N;  }   let maxPoint = 0;  let curMax overlapPoints verticalPoints;  // Creating a map for storing the data.   let slopeMap = new Map();  // looping for each point  for (let i = 0; i < N; i++)  {  curMax = 0;  overlapPoints = 0;  verticalPoints = 0;    // looping from i + 1 to ignore same pair again  for (let j = i + 1; j < N; j++)  {  // If both point are equal then just  // increase overlapPoint count  if (points[i] === points[j]){  overlapPoints++;  }    // If x co-ordinate is same then both  // point are vertical to each other  else if (points[i][0] === points[j][0]){  verticalPoints++;  }  else{  let yDif = points[j][1] - points[i][1];  let xDif = points[j][0] - points[i][0];  let g = gcd(xDif yDif);  // reducing the difference by their gcd  yDif = Math.floor(yDif/g);  xDif = Math.floor(xDif/g);    // increasing the frequency of current slope.   let tmp = [yDif xDif];  if(slopeMap.has(tmp.join(''))){  slopeMap.set(tmp.join('') slopeMap.get(tmp.join('')) + 1);  }  else{  slopeMap.set(tmp.join('') 1);  }    curMax = Math.max(curMax slopeMap.get(tmp.join('')));  }    curMax = Math.max(curMax verticalPoints);  }  // updating global maximum by current point's maximum  maxPoint = Math.max(maxPoint curMax + overlapPoints + 1);    // printf('maximum collinear point  // which contains current point  // are : %dn' curMax + overlapPoints + 1);  slopeMap.clear();  }    return maxPoint; } // Driver code {  let N = 6;  let arr = [[-1 1] [0 0] [1 1] [2 2]  [3 3] [3 4]];  console.log(maxPointOnSameLine(arr)); } // The code is contributed by Gautam goel (gautamgoel962) 

Lähtö
4

Aika monimutkaisuus: O(n 2 rauhallinen) missä n tarkoittaa merkkijonon pituutta.
Aputila: O(n)