logo

Alueen LCM-kyselyt

Kun otetaan huomioon N-kokoisten kokonaislukujen taulukko arr[] ja Q-kyselyiden matriisi query[], jossa jokainen kysely on tyyppiä [L R], mikä tarkoittaa aluetta indeksistä L indeksiin R, tehtävänä on löytää alueen kaikkien numeroiden LCM kaikille kyselyille.

muuntaa merkkijono char javaksi

Esimerkkejä:  



Syöte: arr[] = {5 7 5 2 10 12 11 17 14 1 44}
kysely[] = {{2 5} {5 10} {0 10}}
Lähtö: 6015708 78540
Selitys: Ensimmäisessä kyselyssä LCM(5 2 10 12) = 60 
Toisessa kyselyssä LCM(12 11 17 14 1 44) = 15708
Viimeisessä kyselyssä LCM(5 7 5 2 10 12 11 17 14 1 44) = 78540

Syöte: arr[] = {2 4 8 16} kysely[] = {{2 3} {0 1}}
Lähtö: 16 4

Naiivi lähestymistapa: Lähestymistapa perustuu seuraavaan matemaattiseen ajatukseen:



Matemaattisesti  LCM(l r) = LCM(arr[l]  arr[l+1] . . arr[r-1] arr[r]) ja

LCM(a b) = (a*b) / GCD(ab)

Joten käy läpi matriisi jokaiselle kyselylle ja laske vastaus käyttämällä yllä olevaa LCM:n kaavaa. 



Aika monimutkaisuus: O (N * Q)
Aputila: O(1)

RangeLCM-kyselyt käyttämällä   Segmenttipuu :

Koska kyselyiden määrä voi olla suuri, naiivi ratkaisu olisi epäkäytännöllinen. Tätä aikaa voidaan lyhentää

Tässä ongelmassa ei ole päivitystoimintoa. Joten voimme aluksi rakentaa segmenttipuun ja käyttää sitä vastaamaan kyselyihin logaritmisessa ajassa.

Jokaisen puun solmun tulee tallentaa kyseisen segmentin LCM-arvo, ja voimme käyttää samaa kaavaa kuin yllä segmenttien yhdistämiseen.

Toteuta idea noudattamalla alla mainittuja vaiheita:

  • Rakenna segmenttipuu annetusta taulukosta.
  • Selaa kyselyt läpi. Jokaiselle kyselylle:
    • Etsi kyseinen alue segmenttipuusta.
    • Yhdistä segmentit ja laske kyseisen alueen LCM käyttämällä yllä mainittua kaavaa.
    • Tulosta vastaus kyseiselle jaksolle.

Alla on edellä mainitun lähestymistavan toteutus. 

esimerkki javassa
C++
// LCM of given range queries using Segment Tree #include    using namespace std; #define MAX 1000 // allocate space for tree int tree[4 * MAX]; // declaring the array globally int arr[MAX]; // Function to return gcd of a and b int gcd(int a int b) {  if (a == 0)  return b;  return gcd(b % a a); } // utility function to find lcm int lcm(int a int b) { return a * b / gcd(a b); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global void build(int node int start int end) {  // If there is only one element in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. int query(int node int start int end int l int r) {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end < l || start > r)  return 1;  // completely inside the segment  if (l <= start && r >= end)  return tree[node];  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm); } // driver function to check the above program int main() {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  cout << query(1 0 10 2 5) << endl;  // Print LCM of (5 10)  cout << query(1 0 10 5 10) << endl;  // Print LCM of (0 10)  cout << query(1 0 10 0 10) << endl;  return 0; } 
Java
// LCM of given range queries // using Segment Tree class GFG {  static final int MAX = 1000;  // allocate space for tree  static int tree[] = new int[4 * MAX];  // declaring the array globally  static int arr[] = new int[MAX];  // Function to return gcd of a and b  static int gcd(int a int b)  {  if (a == 0) {  return b;  }  return gcd(b % a a);  }  // utility function to find lcm  static int lcm(int a int b)  {  return a * b / gcd(a b);  }  // Function to build the segment tree  // Node starts beginning index  // of current subtree. start and end  // are indexes in arr[] which is global  static void build(int node int start int end)  {  // If there is only one element  // in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm);  }  // Function to make queries for  // array range )l r). Node is index  // of root of current segment in segment  // tree (Note that indexes in segment  // tree begin with 1 for simplicity).  // start and end are indexes of subarray  // covered by root of current segment.  static int query(int node int start int end int l  int r)  {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end < l || start > r) {  return 1;  }  // completely inside the segment  if (l <= start && r >= end) {  return tree[node];  }  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm  = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm);  }  // Driver code  public static void main(String[] args)  {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  System.out.println(query(1 0 10 2 5));  // Print LCM of (5 10)  System.out.println(query(1 0 10 5 10));  // Print LCM of (0 10)  System.out.println(query(1 0 10 0 10));  } } // This code is contributed by 29AjayKumar 
Python
# LCM of given range queries using Segment Tree MAX = 1000 # allocate space for tree tree = [0] * (4 * MAX) # declaring the array globally arr = [0] * MAX # Function to return gcd of a and b def gcd(a: int b: int): if a == 0: return b return gcd(b % a a) # utility function to find lcm def lcm(a: int b: int): return (a * b) // gcd(a b) # Function to build the segment tree # Node starts beginning index of current subtree. # start and end are indexes in arr[] which is global def build(node: int start: int end: int): # If there is only one element # in current subarray if start == end: tree[node] = arr[start] return mid = (start + end) // 2 # build left and right segments build(2 * node start mid) build(2 * node + 1 mid + 1 end) # build the parent left_lcm = tree[2 * node] right_lcm = tree[2 * node + 1] tree[node] = lcm(left_lcm right_lcm) # Function to make queries for array range )l r). # Node is index of root of current segment in segment # tree (Note that indexes in segment tree begin with 1 # for simplicity). # start and end are indexes of subarray covered by root # of current segment. def query(node: int start: int end: int l: int r: int): # Completely outside the segment # returning 1 will not affect the lcm; if end < l or start > r: return 1 # completely inside the segment if l <= start and r >= end: return tree[node] # partially inside mid = (start + end) // 2 left_lcm = query(2 * node start mid l r) right_lcm = query(2 * node + 1 mid + 1 end l r) return lcm(left_lcm right_lcm) # Driver Code if __name__ == '__main__': # initialize the array arr[0] = 5 arr[1] = 7 arr[2] = 5 arr[3] = 2 arr[4] = 10 arr[5] = 12 arr[6] = 11 arr[7] = 17 arr[8] = 14 arr[9] = 1 arr[10] = 44 # build the segment tree build(1 0 10) # Now we can answer each query efficiently # Print LCM of (2 5) print(query(1 0 10 2 5)) # Print LCM of (5 10) print(query(1 0 10 5 10)) # Print LCM of (0 10) print(query(1 0 10 0 10)) # This code is contributed by # sanjeev2552 
C#
// LCM of given range queries // using Segment Tree using System; using System.Collections.Generic; class GFG {  static readonly int MAX = 1000;  // allocate space for tree  static int[] tree = new int[4 * MAX];  // declaring the array globally  static int[] arr = new int[MAX];  // Function to return gcd of a and b  static int gcd(int a int b)  {  if (a == 0) {  return b;  }  return gcd(b % a a);  }  // utility function to find lcm  static int lcm(int a int b)  {  return a * b / gcd(a b);  }  // Function to build the segment tree  // Node starts beginning index  // of current subtree. start and end  // are indexes in []arr which is global  static void build(int node int start int end)  {  // If there is only one element  // in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm);  }  // Function to make queries for  // array range )l r). Node is index  // of root of current segment in segment  // tree (Note that indexes in segment  // tree begin with 1 for simplicity).  // start and end are indexes of subarray  // covered by root of current segment.  static int query(int node int start int end int l  int r)  {  // Completely outside the segment  // returning 1 will not affect the lcm;  if (end < l || start > r) {  return 1;  }  // completely inside the segment  if (l <= start && r >= end) {  return tree[node];  }  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm  = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm);  }  // Driver code  public static void Main(String[] args)  {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  Console.WriteLine(query(1 0 10 2 5));  // Print LCM of (5 10)  Console.WriteLine(query(1 0 10 5 10));  // Print LCM of (0 10)  Console.WriteLine(query(1 0 10 0 10));  } } // This code is contributed by Rajput-Ji 
JavaScript
<script> // LCM of given range queries using Segment Tree const MAX = 1000 // allocate space for tree var tree = new Array(4*MAX); // declaring the array globally var arr = new Array(MAX); // Function to return gcd of a and b function gcd(a b) {  if (a == 0)  return b;  return gcd(b%a a); } //utility function to find lcm function lcm(a b) {  return Math.floor(a*b/gcd(ab)); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global function build(node start end) {  // If there is only one element in current subarray  if (start==end)  {  tree[node] = arr[start];  return;  }  let mid = Math.floor((start+end)/2);  // build left and right segments  build(2*node start mid);  build(2*node+1 mid+1 end);  // build the parent  let left_lcm = tree[2*node];  let right_lcm = tree[2*node+1];  tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. function query(node start end l r) {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end<l || start>r)  return 1;  // completely inside the segment  if (l<=start && r>=end)  return tree[node];  // partially inside  let mid = Math.floor((start+end)/2);  let left_lcm = query(2*node start mid l r);  let right_lcm = query(2*node+1 mid+1 end l r);  return lcm(left_lcm right_lcm); } //driver function to check the above program  //initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  document.write(query(1 0 10 2 5) +'  
'
); // Print LCM of (5 10) document.write(query(1 0 10 5 10) + '
'
); // Print LCM of (0 10) document.write(query(1 0 10 0 10) + '
'
); // This code is contributed by Manoj. </script>

Lähtö
60 15708 78540

Aika monimutkaisuus: O(Log N * Log n), jossa N on taulukon elementtien lukumäärä. Toinen log n ilmaisee aikaa, joka tarvitaan LCM:n löytämiseen. Tämä aika monimutkaisuus koskee jokaista kyselyä. Kokonaisaikamonimutkaisuus on O(N + Q*Log N*log n), tämä johtuu siitä, että puun rakentamiseen ja sitten kyselyihin vastaamiseen tarvitaan O(N) aikaa.
Aputila: O(N) missä N on taulukon elementtien lukumäärä. Tämä tila tarvitaan segmenttipuun tallentamiseen.

Aiheeseen liittyvä: Segmenttipuu

Lähestymistapa 2: Matematiikassa

Määritämme ensin apufunktion lcm() kahden luvun pienimmän yhteisen kerrannaisen laskemiseksi. Sitten kullekin kyselylle toistamme kyselyalueen määrittelemän arr-aliryhmän ja laskemme LCM:n lcm()-funktiolla. LCM-arvo tallennetaan luetteloon, joka palautetaan lopullisena tuloksena.

Segmenttipuu

Lähestymistapa #2: Matematiikassa

Algoritmi

Segmenttipuu

Lähestymistapa #2: Matematiikassa

1. Määrittele apufunktio lcm(a b) kahden luvun pienimmän yhteisen kerrannaisen laskemiseksi.
2. Määrittele funktio range_lcm_queries(arr queries), joka ottaa syötteenä taulukon arr-kyselyt ja luettelon kyselyaluekyselyistä.
3. Luo tyhjä luettelotulokset tallentaaksesi kunkin kyselyn LCM-arvot.
4. Poimi jokaiselle kyselylle vasen ja oikea indeksi l ja r.
5. Aseta lcm_val arvoksi arr[l].
6. Päivitä jokaiselle indeksille i välillä l+1 - r lcm_val arvoksi lcm_val ja arr[i] käyttämällä lcm()-funktiota.
7. Liitä tulosluetteloon lcm_val.
8. Palauta tulosluettelo.

Segmenttipuu

pikalajittelu

Lähestymistapa #2: Matematiikassa

C++

#include    #include  #include    using namespace std; int gcd(int a int b) {  if (b == 0)  return a;  return gcd(b a % b); } int lcm(int a int b) {  return a * b / gcd(a b); } vector<int> rangeLcmQueries(vector<int>& arr vector<pair<int int>>& queries) {  vector<int> results;  for (const auto& query : queries) {  int l = query.first;  int r = query.second;  int lcmVal = arr[l];  for (int i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr[i]);  }  results.push_back(lcmVal);  }  return results; } int main() {  vector<int> arr = {5 7 5 2 10 12 11 17 14 1 44};  vector<pair<int int>> queries = {{2 5} {5 10} {0 10}};  vector<int> results = rangeLcmQueries(arr queries);  for (const auto& result : results) {  cout << result << ' ';  }  cout << endl;  return 0; } 
Java
/*package whatever //do not write package name here */ import java.util.ArrayList; import java.util.List; public class GFG {  public static int gcd(int a int b) {  if (b == 0)  return a;  return gcd(b a % b);  }  public static int lcm(int a int b) {  return a * b / gcd(a b);  }  public static List<Integer> rangeLcmQueries(List<Integer> arr List<int[]> queries) {  List<Integer> results = new ArrayList<>();  for (int[] query : queries) {  int l = query[0];  int r = query[1];  int lcmVal = arr.get(l);  for (int i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr.get(i));  }  results.add(lcmVal);  }  return results;  }  public static void main(String[] args) {  List<Integer> arr = List.of(5 7 5 2 10 12 11 17 14 1 44);  List<int[]> queries = List.of(new int[]{2 5} new int[]{5 10} new int[]{0 10});  List<Integer> results = rangeLcmQueries(arr queries);  for (int result : results) {  System.out.print(result + ' ');  }  System.out.println();  } } 
Python
from math import gcd def lcm(a b): return a*b // gcd(a b) def range_lcm_queries(arr queries): results = [] for query in queries: l r = query lcm_val = arr[l] for i in range(l+1 r+1): lcm_val = lcm(lcm_val arr[i]) results.append(lcm_val) return results # example usage arr = [5 7 5 2 10 12 11 17 14 1 44] queries = [(2 5) (5 10) (0 10)] print(range_lcm_queries(arr queries)) # output: [60 15708 78540] 
C#
using System; using System.Collections.Generic; class GFG {  // Function to calculate the greatest common divisor (GCD)   // using Euclidean algorithm  static int GCD(int a int b)  {  if (b == 0)  return a;  return GCD(b a % b);  }  // Function to calculate the least common multiple (LCM)   // using GCD  static int LCM(int a int b)  {  return a * b / GCD(a b);  }  static List<int> RangeLcmQueries(List<int> arr List<Tuple<int int>> queries)  {  List<int> results = new List<int>();  foreach (var query in queries)  {  int l = query.Item1;  int r = query.Item2;  int lcmVal = arr[l];  for (int i = l + 1; i <= r; i++)  {  lcmVal = LCM(lcmVal arr[i]);  }  results.Add(lcmVal);  }  return results;  }  static void Main()  {  List<int> arr = new List<int> { 5 7 5 2 10 12 11 17 14 1 44 };  List<Tuple<int int>> queries = new List<Tuple<int int>> {  Tuple.Create(2 5)  Tuple.Create(5 10)  Tuple.Create(0 10)  };  List<int> results = RangeLcmQueries(arr queries);  foreach (var result in results)  {  Console.Write(result + ' ');  }  Console.WriteLine();  } } 
JavaScript
// JavaScript Program for the above approach // function to find out gcd function gcd(a b) {  if (b === 0) {  return a;  }  return gcd(b a % b); } // function to find out lcm function lcm(a b) {  return (a * b) / gcd(a b); } function rangeLcmQueries(arr queries) {  const results = [];  for (const query of queries) {  const l = query[0];  const r = query[1];  let lcmVal = arr[l];  for (let i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr[i]);  }  results.push(lcmVal);  }  return results; } // Driver code to test above function const arr = [5 7 5 2 10 12 11 17 14 1 44]; const queries = [[2 5] [5 10] [0 10]]; const results = rangeLcmQueries(arr queries); for (const result of results) {  console.log(result + ' '); } console.log(); // THIS CODE IS CONTRIBUTED BY PIYUSH AGARWAL 

Lähtö
[60 15708 78540]

Aika monimutkaisuus: O(log(min(ab))). Jokaiselle kyselyalueelle iteroidaan O(n) kokoisen alitaulukon läpi, jossa n on arr:n pituus. Siksi kokonaisfunktion aikamonimutkaisuus on O(qn log(min(a_i))) missä q on kyselyjen määrä ja a_i on arr:n i. elementti.
Tilan monimutkaisuus: O(1), koska tallennamme vain muutaman kokonaisluvun kerrallaan. Tulon arr ja kyselyjen käyttämää tilaa ei oteta huomioon.